2015-06-02

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>23:51:01</td>
<td>00:52:01</td>
<td>2013.1.00524.S</td>
<td>NGC5135_a_09_TE</td>
<td>ALMA Explorations of Nuclear Regions of Nearby LIRGs: Warm Molecular Gas Distribution Down to GMC Scales</td>
<td>Lu</td>
<td>NA</td>
<td>12-m</td>
<td>9</td>
</tr>
</tbody>
</table>

2015-06-03

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>02:09:44</td>
<td>03:00:21</td>
<td>2013.1.00099.S</td>
<td>Arp220_a_07_TE</td>
<td>Dense Gas Thermometry of Starburst Galaxies</td>
<td>Mangum</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>03:02:09</td>
<td>04:37:26</td>
<td>2013.1.00368.S</td>
<td>arp220_a_08_TE</td>
<td>Atomic carbon in nearby active galaxies: Studying [CI] in NGC253, NGC1098 and Arp220</td>
<td>Krips</td>
<td>EU</td>
<td>12-m</td>
<td>8</td>
</tr>
<tr>
<td>04:37:56</td>
<td>06:08:56</td>
<td>2013.1.00726.S</td>
<td>Serpens_a_07_12</td>
<td>Probing magnetic fields in the inner envelopes of Class 0 protostars via dust polarization</td>
<td>Hull</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>05:06:49</td>
<td>06:44:37</td>
<td>2013.1.00327.S</td>
<td>G332.767_a_06_7M</td>
<td>The Evolution of Young HII regions</td>
<td>Klaassen</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>06:57:09</td>
<td>08:40:38</td>
<td>2013.1.00726.S</td>
<td>Serpens_a_07_12</td>
<td>Probing magnetic fields in the inner envelopes of Class 0 protostars via dust polarization</td>
<td>Hull</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>06:58:14</td>
<td>08:40:10</td>
<td>2013.1.00327.S</td>
<td>G332.767_a_06_7M</td>
<td>The Evolution of Young HII regions</td>
<td>Klaassen</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>08:42:42</td>
<td>10:34:45</td>
<td>2013.1.00139.S</td>
<td>Cosmic_E_a_07_TE</td>
<td>The Extinction-free Metallicity Indicator for High-z Galaxies: Its Calibration and Application at z=3</td>
<td>Nagao</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>10:35:28</td>
<td>11:15:51</td>
<td>2013.1.01329.S</td>
<td>n613_a_07_TE</td>
<td>Feeding and Feedback in the central region of NGC 613</td>
<td>Miyamoto</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>10:58:59</td>
<td>11:41:42</td>
<td>2013.1.01004.S</td>
<td>Uranus_a_06_TP</td>
<td>Revealing the secrets of VLA1623: an in-depth look into the earliest star formation stage</td>
<td>Lai</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>11:34:43</td>
<td>12:12:11</td>
<td>2013.1.00535.S</td>
<td>Mrk1014_b_08_TE</td>
<td>Probing the AGN activity and molecular interstellar medium in ultra-luminous infrared galaxies using CH</td>
<td>Rangwala</td>
<td>NA</td>
<td>12-m</td>
<td>8</td>
</tr>
<tr>
<td>23:32:35</td>
<td>00:26:46</td>
<td>2013.1.00210.S</td>
<td>NGC5253_a_06_TP</td>
<td>Unveiling the building elements of nearest and youngest starburst galaxy NGC5253</td>
<td>Miura</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
</tbody>
</table>

2015-06-04

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00:34</td>
<td>01:15:05</td>
<td>2013.1.00327.S</td>
<td>G302.486_a_06_TE</td>
<td>The Evolution of Young HII regions</td>
<td>Klaassen</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>00:40:21</td>
<td>01:36:49</td>
<td>2013.1.01004.S</td>
<td>VLA1623A_a_06_TP</td>
<td>Revealing the secrets of VLA1623: an in-depth look into the earliest star formation stage</td>
<td>Lai</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>01:15:35</td>
<td>01:43:29</td>
<td>2012.1.00453.S</td>
<td>Arp220_B6_low_4</td>
<td>Spatially resolved wide band spectroscopy in ULIRG obscured nuclei</td>
<td>Martin</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:37:13</td>
<td>02:31:36</td>
<td>2013.1.00210.S</td>
<td>NGC5253_a_06_TP</td>
<td>Unveiling the building elements of nearest and youngest starburst galaxy NGC5253</td>
<td>Miura</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>02:03:06</td>
<td>02:32:49</td>
<td>2012.1.00453.S</td>
<td>Arp220_B6_low_5</td>
<td>Spatially resolved wide band spectroscopy in ULIRG obscured nuclei</td>
<td>Martin</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:33:12</td>
<td>04:07:11</td>
<td>2012.1.00105.S</td>
<td>NGC5253_345GHz_12m_C32-5</td>
<td>Where the Gas Meets the Stars: The Young Super Star Cluster in NGC 5253</td>
<td>Turner</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>04:07:38</td>
<td>05:40:12</td>
<td>2012.1.00105.S</td>
<td>NGC5253_345GHz_12m_C32-5</td>
<td>Where the Gas Meets the Stars: The Young Super Star Cluster in NGC 5253</td>
<td>Turner</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>04:42:36</td>
<td>05:37:00</td>
<td>2013.1.00210.S</td>
<td>NGC5253_a_06_TP</td>
<td>Unveiling the building elements of nearest and youngest starburst galaxy NGC5253</td>
<td>Miura</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>05:40:39</td>
<td>07:29:09</td>
<td>2013.1.00327.S</td>
<td>G332.767_a_06_TE</td>
<td>The Evolution of Young HII regions</td>
<td>Klaassen</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>09:13:46</td>
<td>09:44:55</td>
<td>2013.1.01057.S</td>
<td>vv114_a_03_TE_tuning</td>
<td>Band 3/4 spectral scan in the central filament of merging LIRG VV114</td>
<td>Saito</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
</tbody>
</table>
2015-06-05

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:14:16</td>
<td>01:08:18</td>
<td>2013.1.00210.S</td>
<td>NGC5253_a_06_TP</td>
<td>Unveiling the building elements of nearest and youngest starburst galaxy NGC5253</td>
<td>Miura</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>00:21:51</td>
<td>01:54:46</td>
<td>2012.1.00105.S</td>
<td>NGC5253_345GHz_12m_C32-5</td>
<td>Where the Gas Meets the Stars: The Young Super Star Cluster in NGC 5253</td>
<td>Turner</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>01:08:52</td>
<td>02:02:59</td>
<td>2013.1.00210.S</td>
<td>NGC5253_a_06_TP</td>
<td>Unveiling the building elements of nearest and youngest starburst galaxy NGC5253</td>
<td>Miura</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>02:14:30</td>
<td>02:55:11</td>
<td>2013.1.01153.S</td>
<td>SDSS_J13_a_07_TE</td>
<td>Revealing Major Mergers Among the Extreme Star Forming Hosts of the Fastest Growing Super-Massive Black Holes at z~4.8</td>
<td>Lira</td>
<td>CL</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>07:10:17</td>
<td>08:47:32</td>
<td>2013.1.00955.S</td>
<td>JJK2_a_07_TE</td>
<td>Properties and evolution of embedded protostellar disks</td>
<td>Jorgensen</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>08:43:27</td>
<td>09:12:19</td>
<td>2013.1.00211.S</td>
<td>B335_a_06_TP</td>
<td>X marks the spot: outflow-infall interaction in B335</td>
<td>Mardones</td>
<td>CL</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>09:54:51</td>
<td>10:25:21</td>
<td>2013.1.01057.S</td>
<td>vv114_a_03_TE_tuning1</td>
<td>Band 3/4 spectral scan in the central filament of merging LIRG VV114</td>
<td>Saito</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>10:25:52</td>
<td>11:47:58</td>
<td>2013.1.00781.S</td>
<td>SXDS-AzT_a_06_TE</td>
<td>Bright End of Number Counts Revealed by ALMA</td>
<td>Hatsukade</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>23:41:05</td>
<td>00:04:04</td>
<td>2013.1.00033.S</td>
<td>NGC_4418_a_06_TE</td>
<td>The role of infrared radiative pumping for molecular gas emission in AGNs</td>
<td>Imanishi</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
</tbody>
</table>

2015-06-06

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:12:07</td>
<td>01:16:40</td>
<td>2012.1.00426.S</td>
<td>PG1241_643_12m_C32-123456</td>
<td>A First Measurement of the [NII]205um/[CII]158um Ratio at z=1</td>
<td>Mardones</td>
<td>CL</td>
<td>Total Power</td>
<td>7</td>
</tr>
<tr>
<td>01:53:16</td>
<td>02:58:11</td>
<td>2012.1.00781.S</td>
<td>iras1627_a_07_TP</td>
<td>IRAS 16272-4837: The birth of a massive protostar</td>
<td>Hailey-Dunsheath</td>
<td>NA</td>
<td>12-m</td>
<td>9</td>
</tr>
<tr>
<td>01:54:47</td>
<td>02:27:04</td>
<td>2013.1.01230.S</td>
<td>G045.1+6_a_08_TE</td>
<td>Winds, dust, and gas in three of Planck's Dusty GEMS: Boosting ALMA's capabilities with the most powerful gravitational telescopes in the sky</td>
<td>Nesvadba</td>
<td>EU</td>
<td>12-m</td>
<td>8</td>
</tr>
<tr>
<td>02:27:29</td>
<td>03:18:06</td>
<td>2013.1.00061.S</td>
<td>IRAS1629_a_08_TE</td>
<td>Investigating the water deuteration in a young protostellar system</td>
<td>Coutens</td>
<td>EU</td>
<td>12-m</td>
<td>8</td>
</tr>
<tr>
<td>02:58:35</td>
<td>04:03:25</td>
<td>2012.1.00781.S</td>
<td>iras1627_a_07_TP</td>
<td>IRAS 16272-4837: The birth of a massive protostar</td>
<td>Mardones</td>
<td>CL</td>
<td>Total Power</td>
<td>7</td>
</tr>
</tbody>
</table>
Hydrides as diagnostic tools for the z=0.89 absorption toward PKS 1830-211

Mardones CL Total Power 7

X marks the spot: outflow-infall interaction in B335
Mardones CL Total Power 6

X marks the spot: outflow-infall interaction in B335
Mardones CL Total Power 6

IRAS 16272-4837: The birth of a massive protostar
Mardones CL Total Power 7

IRAS 16272-4837: The birth of a massive protostar
Mardones CL Total Power 7

Molecular envelope of WISE J180956.27-330500.2: The first example of ongoing mass eruption after thermal pulse
Yamamura EA 12-m 7

X marks the spot: outflow-infall interaction in B335
Mardones CL Total Power 6

Tracing the Star Formation at z=6.11 with [OIII]
Madden EU 12-m 8

Detailed molecular gas distribution of an active star forming region within a low-metallicity environment: CO/C1 observations of N83 in the Small Magellanic Cloud (SMC)
Onishi EA 7-m 7

Probing the AGN activity and molecular interstellar medium in ultraluminous infrared galaxies using CH
Rangwala NA 12-m 8

Measuring the molecular gas mass of a high redshift galaxy with HD
Caselli EU 12-m 8

Feeding and Feedback in the central region of NGC 613
Miyamoto EA 7-m 7

A survey of deuterium chemistry in protoplanetary disks
Oberg NA 12-m 6

Probing a mass distribution of the central 1000AU toward a dense core very close to a moment of the first protostellar core phase in Taurus
Onishi EA 7-m 7

Imaging of Circumstellar Matter around Protobinary L 1551 IRS 5: From Infalling Envelope to Circumbinary Disk
Momose EA 7-m 7

Chemical Abundances in Planet-Forming Disks: The Carbon Reservoir
Bergin NA 12-m 6

Exploring the Evolution of Molecular Clouds by the Velocity Vectors in NGC1566
Miyamoto EA 7-m 3

Testing feedback scenarios and clump life times in a prototypical z~2 galaxy
Cibinel EU 12-m 6

Sub-parsec scale structure of quiescent molecular clouds possibly pre-forming clusters
Kawamura EA 7-m 3

Probing the physics and chemistry of the candidate first-hydrostatic core Chamaeleon MMS1
Cordiner NA 12-m 6

ALMA Detection of a Superwind-Driven Shocked Shell Associated with the Proximate DLA of SDSS J124020.91+145535.6 at z=3.1
Taniguchi EA 7-m 8

Probing the physics and chemistry of the candidate first-hydrostatic core Chamaeleon MMS1
Cordiner NA 12-m 6

ALMA Detection of a Superwind-Driven Shocked Shell Associated with the Proximate DLA of SDSS J124020.91+145535.6 at z=3.1
Taniguchi EA 7-m 8
2015-06-07

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:07:15</td>
<td>02:45:33</td>
<td>2013.1.00327.S</td>
<td>G332.767_a_06_7M</td>
<td>The Evolution of Young H II regions</td>
<td>Klaassen</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>01:17:34</td>
<td>02:48:47</td>
<td>2013.1.00745.S</td>
<td>BR1202-0_a_08_TE</td>
<td>Assessing the nature of the ISM at high-z through multiple detections of line-structure lines</td>
<td>Nagao</td>
<td>EA</td>
<td>12-m</td>
<td>8</td>
</tr>
<tr>
<td>02:57:47</td>
<td>03:44:10</td>
<td>2013.1.00379.S</td>
<td>IRAS_131_a_07_TE</td>
<td>The Forgotten Local Ultra Luminous Infrared Galaxy: IRAS 13120-5453</td>
<td>Siwa</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>03:37:30</td>
<td>04:24:03</td>
<td>2012.1.00543.S</td>
<td>SgrAstar_a_07_TP</td>
<td>Fuelling the Galactic center super massive black hole</td>
<td>Martin</td>
<td>EU</td>
<td>Total Power</td>
<td>7</td>
</tr>
<tr>
<td>03:47:03</td>
<td>05:30:58</td>
<td>2013.1.00726.S</td>
<td>Serpens_a_07_TP</td>
<td>Probing magnetic fields in the inner envelopes of Class 0 protostars via dust polarization</td>
<td>Hull</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>04:42:39</td>
<td>05:46:46</td>
<td>2012.1.00543.S</td>
<td>SgrAstar_a_07_TP</td>
<td>Fuelling the Galactic center super massive black hole</td>
<td>Martin</td>
<td>EU</td>
<td>Total Power</td>
<td>7</td>
</tr>
<tr>
<td>05:37:05</td>
<td>06:56:17</td>
<td>2013.1.00726.S</td>
<td>Serpens_a_07_TP</td>
<td>Probing magnetic fields in the inner envelopes of Class 0 protostars via dust polarization</td>
<td>Hull</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>05:47:01</td>
<td>06:51:30</td>
<td>2012.1.00543.S</td>
<td>SgrAstar_a_07_TP</td>
<td>Fuelling the Galactic center super massive black hole</td>
<td>Martin</td>
<td>EU</td>
<td>Total Power</td>
<td>7</td>
</tr>
<tr>
<td>06:51:49</td>
<td>07:55:51</td>
<td>2012.1.00543.S</td>
<td>SgrAstar_a_07_TP</td>
<td>Fuelling the Galactic center super massive black hole</td>
<td>Martin</td>
<td>EU</td>
<td>Total Power</td>
<td>7</td>
</tr>
<tr>
<td>06:56:37</td>
<td>07:45:55</td>
<td>2013.1.00061.S</td>
<td>IRAS1629_b_08_TE</td>
<td>Investigating the water deuteration in a young protostellar system</td>
<td>Coutens</td>
<td>EU</td>
<td>12-m</td>
<td>8</td>
</tr>
<tr>
<td>07:56:10</td>
<td>09:00:06</td>
<td>2012.1.00543.S</td>
<td>SgrAstar_a_07_TP</td>
<td>Fuelling the Galactic center super massive black hole</td>
<td>Martin</td>
<td>EU</td>
<td>Total Power</td>
<td>7</td>
</tr>
<tr>
<td>08:07:08</td>
<td>10:09:03</td>
<td>2013.1.00524.S</td>
<td>ICS179_a_09_TE</td>
<td>ALMA Explorations of Nuclear Regions of Nearby LIRGs: Warm Molecular Gas Distribution Down to GMC Scales</td>
<td>Lu</td>
<td>NA</td>
<td>12-m</td>
<td>9</td>
</tr>
<tr>
<td>09:33:53</td>
<td>11:35:01</td>
<td>2013.1.00469.S</td>
<td>VV114_a_09_7M</td>
<td>The Warm Molecular Gas of VV 114</td>
<td>Siwa</td>
<td>NA</td>
<td>7-m</td>
<td>9</td>
</tr>
<tr>
<td>10:09:48</td>
<td>11:12:34</td>
<td>2012.1.00596.S</td>
<td>PKS0215+015_699_12m_C32-3</td>
<td>ALMA Imaging of the Star Formation Process at the Historic Peak</td>
<td>Stacey</td>
<td>NA</td>
<td>12-m</td>
<td>9</td>
</tr>
<tr>
<td>11:38:39</td>
<td>13:12:27</td>
<td>2013.1.01010.S</td>
<td>SXDF-NB1_a_08_TE</td>
<td>The far-infrared [OIII] line emissivity of high-z low-metallicity galaxies</td>
<td>Inoue</td>
<td>EA</td>
<td>12-m</td>
<td>8</td>
</tr>
<tr>
<td>11:55:35</td>
<td>12:49:08</td>
<td>2012.1.00543.S</td>
<td>Uranus_SgrAstar_a_07_TP</td>
<td>Fuelling the Galactic center super massive black hole</td>
<td>Martin</td>
<td>EU</td>
<td>Total Power</td>
<td>7</td>
</tr>
<tr>
<td>15:26:29</td>
<td>16:41:42</td>
<td>2013.1.00212.S</td>
<td>N83C_a_06_7M</td>
<td>Detailed molecular gas distribution of an active star forming region within a low-metallicity environment: CO/C1 observations of N83 in the Small Magellanic Cloud (SMC)</td>
<td>Onishi</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>15:49:08</td>
<td>16:57:05</td>
<td>2013.1.00041.S</td>
<td>1-NGC220_a_03_TE</td>
<td>Star Formation, Shocks, and AGN in a Pre-Starburst Galaxy Collision</td>
<td>Elmegreen</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>16:55:27</td>
<td>18:09:35</td>
<td>2013.1.00149.S</td>
<td>RN122_a_07_7M</td>
<td>Rosette Globulets</td>
<td>Haikala</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>17:26:39</td>
<td>18:36:43</td>
<td>2013.1.00041.S</td>
<td>1-NGC220_a_03_TE</td>
<td>Star Formation, Shocks, and AGN in a Pre-Starburst Galaxy Collision</td>
<td>Elmegreen</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>18:39:24</td>
<td>19:08:50</td>
<td>2013.1.00070.S</td>
<td>IRAS_074_a_03_TE_a</td>
<td>A survey of carbon-rich circumstellar envelopes</td>
<td>Nyman</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>19:46:53</td>
<td>20:20:10</td>
<td>2013.1.00070.S</td>
<td>IRAS_074_a_03_TE_c</td>
<td>A survey of carbon-rich circumstellar envelopes</td>
<td>Nyman</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>21:26:27</td>
<td>22:55:03</td>
<td>2013.1.01113.S</td>
<td>Cha-MMS1_b_06_TE</td>
<td>Probing the physics and chemistry of the candidate first-hydrostatic core Chamaeleon MMS1</td>
<td>Cordiner</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
</tbody>
</table>

2015-06-08

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:49:50</td>
<td>02:21:33</td>
<td>2013.1.00745.S</td>
<td>BR1202-0_a_08_TE</td>
<td>Assessing the nature of the ISM at high-z through multiple detections of line-structure lines</td>
<td>Nagao</td>
<td>EA</td>
<td>12-m</td>
<td>8</td>
</tr>
</tbody>
</table>
at high-z through multiple detections of fine-structure lines

00:52:12 01:26:57 2012.1.00178.S L1689N_a_07_TP Deuterated Ammonia in Prestellar Cores Lis NA Total Power 7
03:34:13 04:33:15 2013.1.01242.S SIO_15_a_1_07_TE SIO Observations of the Circumnuclear Molecular Ring and Its Interior Yusef-Zadeh NA 12-m 7
04:38:52 05:32:44 2013.1.00941.S GRB05040_a_07_TE Shedding Light on Distant Starburst Galaxies Hosted by Dust Obscured gamma-ray Bursts Wang EA 12-m 7
07:55:54 08:36:13 2013.1.00126.S Ar2591_a_07_TE Are there non-fragmenting massive dense cores? Palau EU 12-m 6
07:59:07 09:49:04 2013.1.00126.S SgrA Sta_a_09_7M Defining the Neutral Material which Survives to within 0.1 parsec of the Galactic Supermassive Black Hole Ho EA 7-m 9
09:04:26 09:53:45 2013.1.00152.S WISE_230_a_09_TE Hyperluminous Hot DOGs: Hosts to High-Velocity Molecular Outflows? Fischer NA 12-m 9
10:01:26 11:15:59 2013.1.01364.S eso_137-a_03_7M Feeding and Feedback in the central region of NGC 613 Miyamoto EA 7-m 7
21:53:21 23:27:02 2013.1.00178.S SgrA Sta_a_09_7M Atmospheric chemistry on Venus: Diurnal variation of chlorine species Sagawa EA 12-m 9
23:27:43 00:31:51 2013.1.01153.S SDSS_J09_b_07_TE Revealing Major Mergers Among the Extreme Star Forming Hosts of the Fastest Growing Super-Massive Black Holes at z~4.8 Lira CL 12-m 7

2015-06-09

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
</table>
| 00:57:27 | 01:57:44 | Arp220_B9_1__C4 | | Gauging Deeply Hidden Nuclei of Arp 220 Sakamoto EA 12-m 9
| 01:16:37 | 02:39:58 | eso_137-a_03_7M | | Molecular gas in a galaxy’s wake Jachym EU 7-m 3
| 01:58:17 | 03:03:14 | Arp220_B9_2__C4 | | Gauging Deeply Hidden Nuclei of Arp 220 Sakamoto EA 12-m 9
| 03:03:38 | 04:25:58 | IRAS_131_a_09_TE | | The Forgotten Local Ultra Luminous Infrared Galaxy: IRAS 13120-5453 Sliwa NA 12-m 9
| 04:25:58 | 05:07:01 | L1689N_a_07_TP | | Deuterated Ammonia in Prestellar Cores Lis NA Total Power 7
| 05:07:20 | 06:12:40 | L1689N_a_07_TP | | Deuterated Ammonia in Prestellar Cores Lis NA Total Power 7
| 05:42:54 | 07:00:50 | FMR2006_a_06_TE | | The mass-loss rates of Red Supergiants Davies EU 12-m 6
| 06:35:50 | 07:41:16 | L1689N_a_07_TP | | Deuterated Ammonia in Prestellar Cores Lis NA Total Power 7
| 07:01:30 | 08:42:49 | WISE_220_a_09_TE | | Hyperluminous Hot DOGs: Hosts to High-Velocity Molecular Outflows? Fischer NA 12-m 9
| 07:41:46 | 08:46:37 | MSXDC_G0_a_07_TP | | Dissecting filaments with ALMA: Unveiling the dynamic properties of dense cores within a massive IRDC Henshaw EU Total Power 7
| 08:46:53 | 09:56:24 | MSXDC_G0_a_07_TP | | Dissecting filaments with ALMA: Unveiling the dynamic properties of dense cores within a massive IRDC Henshaw EU Total Power 7
| 08:59:16 | 09:37:46 | WISE_221_a_09_TE | | Hyperluminous Hot DOGs: Hosts to High-Velocity Molecular Outflows? Fischer NA 12-m 9
| 09:59:37 | 11:33:27 | SXDF-NB1_a_08_TE | | The far-infrared [OIII] line emissivity of high-z low-metallicity galaxies Inoue EA 12-m 8
| 11:20:08 | 12:14:55 | Uranus_a_07_TP | | Deuterated Ammonia in Prestellar Cores Lis NA Total Power 7