2016-08-01

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>22:42:14</td>
<td>23:23:40</td>
<td>2015.1.00449.S</td>
<td>13039-61_a_07_TE</td>
<td>Fragmentation of massive dense clumps: unveiling the initial conditions of high-mass star formation</td>
<td>Fontani</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>22:47:20</td>
<td>00:15:21</td>
<td>2015.1.00023.S</td>
<td>HD_16329_a_06_7M</td>
<td>Understanding the Disk Wind from HDKlaassen 163296</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>23:24:43</td>
<td>00:02:06</td>
<td>2015.1.00121.S</td>
<td>M83_c_06_TP</td>
<td>Molecular Clouds and Star Formation: Sakamoto Inner Disk of M83</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>23:26:20</td>
<td>00:35:56</td>
<td>2015.1.01406.S</td>
<td>A1689-zD_a_06_TE</td>
<td>Anomalously faint [CII]from a merger at z=7.60</td>
<td>Watson</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
</tbody>
</table>

2016-08-02

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:42:24</td>
<td>02:01:14</td>
<td>2015.1.00749.S</td>
<td>G028,314_a_03_7M</td>
<td>Properties of the most distant star-forming GMC in the Milky Way</td>
<td>Moltram</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>00:56:19</td>
<td>02:07:51</td>
<td>2015.1.00934.S</td>
<td>rho_Oph_a_07_TE</td>
<td>Investigating molecular gas in disks around young Brown Dwarfs with ALMA</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>01:24:59</td>
<td>02:02:35</td>
<td>2015.1.00956.S</td>
<td>NGC_6744_a_06_TP</td>
<td>How Does Cloud-Scale Physics Drive Leroy Galaxy Evolution?</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>02:02:05</td>
<td>03:23:39</td>
<td>2015.1.00601.S</td>
<td>mosaic2_a_03_7M</td>
<td>G351.77-0.51: ridge formation caughtLeurini in the act</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>02:09:02</td>
<td>03:11:46</td>
<td>2015.1.00888.S</td>
<td>2MASS_J1_a_07_TE</td>
<td>Probing disk structure in a cavity of pre-transitional disks around Sun-like young stars</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>02:32:10</td>
<td>03:09:51</td>
<td>2015.1.00956.S</td>
<td>NGC_6744_a_06_TP</td>
<td>How Does Cloud-Scale Physics Drive Leroy Galaxy Evolution?</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>03:12:35</td>
<td>04:00:48</td>
<td>2015.1.01058.S</td>
<td>CrA-1_a_06_TE</td>
<td>Corona Australis Disk Zoo</td>
<td>Liu</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>04:41:33</td>
<td>05:47:48</td>
<td>2015.1.01099.S</td>
<td>Serpens_a_06_TE</td>
<td>Imaging the circumstellar matter around the Class 0 protostellar binary SMM1/FIRS1 in Serpens</td>
<td>Dionatos</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>05:48:17</td>
<td>07:08:21</td>
<td>2015.1.00212.S</td>
<td>mADF22_a_03_TE</td>
<td>Dense Molecular Gas Mapping of the Umehata Node in the Cosmic Web at z=3.1</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>06:11:16</td>
<td>07:47:53</td>
<td>2015.1.00274.S</td>
<td>NGC253_a_07_7M</td>
<td>A Close Look into the Blast Furnace: the Core of the NGC253 Starburst at One Parsec Resolution</td>
<td>NA</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>06:13:58</td>
<td>07:02:05</td>
<td>2015.1.01296.S</td>
<td>NGC345-p_a_06_TP</td>
<td>Collisional star-formation in the SMC: Muller NGC346</td>
<td>Muller</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>07:03:11</td>
<td>08:05:34</td>
<td>2015.1.00274.S</td>
<td>NGC253_a_07_TP</td>
<td>A Close Look into the Blast Furnace: the Core of the NGC253 Starburst at One Parsec Resolution</td>
<td>NA</td>
<td>Total Power</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>07:09:02</td>
<td>08:23:03</td>
<td>2015.1.00723.S</td>
<td>HXMM01_a_06_TE</td>
<td>Dissecting the colossi: confronting recent theory with two multi-merging HyLIRGs</td>
<td>Oteo</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>07:48:13</td>
<td>08:58:55</td>
<td>2015.1.01013.S</td>
<td>MagBridg_a_06_7M</td>
<td>Physical Properties and Submillimeter Rubio Excess in low metallicity clouds in the Magellanic Bridge</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>08:05:52</td>
<td>09:10:38</td>
<td>2015.1.00274.S</td>
<td>NGC253_a_07_TP</td>
<td>A Close Look into the Blast Furnace: the Core of the NGC253 Starburst at One Parsec Resolution</td>
<td>NA</td>
<td>Total Power</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>08:23:45</td>
<td>09:38:13</td>
<td>2015.1.00543.S</td>
<td>GOODS-S_e_06_TE</td>
<td>Towards a census of star-formation since z~6 with ALMA-1.1mm</td>
<td>Elbaz</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>08:59:13</td>
<td>10:10:13</td>
<td>2015.1.01013.S</td>
<td>MagBridg_a_06_7M</td>
<td>Physical Properties and Submillimeter Rubio Excess in low metallicity clouds in the</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Exploring the nature of phase of high-mass star formation
Mass assembly in the pre-stellar in the act
G351.77--0.51: ridge formation caught
Project Title
NGC6334I
Massive Protostellar Cluster
Detected Accretion Event in the Measuring the Luminosity of an ALMA
NGC6334I
Massive Protostellar Cluster
Detected Accretion Event in the Measuring the Luminosity of an ALMA
Galaxy Evolution?
How Does Cloud-Scale Physics Drive Galaxies extremely IR-bright Dust Obscured
Proving the AGN feedback in the
Galaxy Evolution?
How Does Cloud-Scale Physics Drive
clump mass function toward the IMF
Identifying the transition phase of the
explosion site
Digging for rusty bullets at an
stratification in PDRs
Density structures and chemical
structure of CO gas at low metallicity
Zooming in on the parsec-scale
and its relation to star formation
Towards a census of star-formation
Promoting Diversity: ISM Physics and Blanc
Star Formation across Different Environments
Towards a census of star-formation
since z-6 with ALMA-1.1mm
ALMA imaging of the Orion Bar: Density structures and chemical stratification in PDRs
Digging for rusty bullets at an explosion site
Identifying the transition phase of the clump mass function toward the IMF
Identifying the transition phase of the clump mass function toward the IMF
Identifying the transition phase of the clump mass function toward the IMF
Identifying the transition phase of the clump mass function toward the IMF
Digging for rusty bullets at an explosion site
A resolved view to the dust content in star-forming HaIpha galaxies at z = 1.47-2.23
Identifying the transition phase of the clump mass function toward the IMF
Digging for rusty bullets at an explosion site
A close Look into the Blast Furnace:
How Does Cloud-Scale Physics Drive Leroy Galaxy Evolution?
CO vs. Cl in Henize 2-10
Promoting Diversity: ISM Physics and Blanc
Star Formation across Different Environments
How Does Cloud-Scale Physics Drive Leroy Galaxy Evolution?
Proving the AGN feedback in the extremely IR-bright Dust Obscured Galaxies
How Does Cloud-Scale Physics Drive Leroy Galaxy Evolution?
How Does Cloud-Scale Physics Drive Leroy Galaxy Evolution?
Measuring the Luminosity of an ALMA Hunter Detected Accretion Event in the Massive Protostellar Cluster NGC6334I
Measuring the Luminosity of an ALMA Hunter Detected Accretion Event in the Massive Protostellar Cluster NGC6334I

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:22:46</td>
<td>01:44:49</td>
<td>2015.1.00601.S</td>
<td>mosaic2_a_03_TP</td>
<td>G351.77--0.51: ridge formation caught</td>
<td>Leurini</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>00:24:02</td>
<td>00:51:22</td>
<td>2015.1.00667.S</td>
<td>AG22.36+_f_06_TP</td>
<td>Mass assembly in the pre-stellar phase of high-mass star formation</td>
<td>Wang</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>00:35:09</td>
<td>01:38:48</td>
<td>2015.1.00734.T</td>
<td>Neutron_a_07_TE</td>
<td>Exploring the nature of</td>
<td>Diaz Trigo</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
</tbody>
</table>
11:41:18 01:19:32 2015.1.00667.S AG22.36+_f_06_TP Mass assembly in the pre-stellar phase of high-mass star formation Wang EU Total Power 6
01:20:25 01:47:53 2015.1.00667.S AG22.36+_e_06_TP Mass assembly in the pre-stellar phase of high-mass star formation Wang EU Total Power 6
01:39:36 02:06:51 2015.1.00734.T Neutron_a_03_TE Exploring the nature of relativistic jets Diaz Trigo in neutron star X-ray binaries - Part 2 EU 12-m 3
01:45:11 03:06:35 2015.1.00601.S mosaic2_a_03_7M G351.77−0.51: ridge formation caughtLeurini in the act EU 7-m 3
01:49:16 02:16:49 2015.1.00667.S AG22.36+_e_06_TP Mass assembly in the pre-stellar phase of high-mass star formation Wang EU Total Power 6
02:17:57 04:05:28 2015.1.01018.S B335_a_07_TE Magnetic Field Structure around a Protostar with Effective Magnetic Braking Yen EA 12-m 7
04:06:34 05:59:52 2015.1.01018.S B335_a_07_TE Magnetic Field Structure around a Protostar with Effective Magnetic Braking Yen EA 12-m 7
04:16:09 04:43:51 2015.1.00667.S AG22.36+_f_06_TP Mass assembly in the pre-stellar phase of high-mass star formation Wang EU Total Power 6
04:44:48 05:12:18 2015.1.00667.S AG22.36+_f_06_TP Mass assembly in the pre-stellar phase of high-mass star formation Wang EU Total Power 6
05:16:12 05:43:40 2015.1.00667.S AG22.36+_k_06_TP Mass assembly in the pre-stellar phase of high-mass star formation Wang EU Total Power 6
05:31:57 07:03:43 2015.1.00897.S MRC0156-_a_03_7M Cold gas halos at z~2: evolution of massive galaxies within a molecular IGM Emonts EU 7-m 3
05:44:24 06:11:43 2015.1.00667.S AG22.36+_k_06_TP Mass assembly in the pre-stellar phase of high-mass star formation Wang EU Total Power 6
06:12:33 07:00:55 2015.1.01296.S NGC345-p_a_06_TP Collisional star-formation in the SMC: Muller NGC346 EA Total Power 6
07:02:01 07:46:08 2015.1.00925.S NGC_1087_a_06_TP Promoting Diversity: ISM Physics and Blanc Star Formation across Different Environments CL Total Power 6
07:04:37 08:36:46 2015.1.00897.S MRC0156-_a_03_7M Cold gas halos at z~2: evolution of massive galaxies within a molecular IGM Emonts EU 7-m 3
07:19:24 08:22:36 2015.1.00250.S BX610_a_06_TE Resolving the molecular ISM in a unique star-forming disk galaxy at z=2 Aravena CL 12-m 6
08:26:08 09:04:32 2015.1.01148.S W0149+23_a_03_TE Molecular gas in WISE-selected Hyper-luminous Hot, Dust-obscured Galaxies Fan OTHER 12-m 3
08:37:33 09:48:25 2015.1.01013.S MagBridg_a_06_7M Physical Properties and Submillimeter Rubio Excess in low metallicity clouds in the Magellanic Bridge CL 7-m 6
09:06:04 10:20:58 2015.1.00834.S WMH_5_a_06_TE Resolving a main-sequence star-forming galaxy merger at redshift 6 Willott NA 12-m 6
09:14:20 10:09:04 2015.1.00665.S 0413_238_a_06_TP After the Fall: Mapping the Molecular Fuel in Post-Starburst Galaxies Smith NA Total Power 6
09:49:06 11:05:07 2015.1.01013.S MagBridg_a_06_7M Physical Properties and Submillimeter Rubio Excess in low metallicity clouds in the Magellanic Bridge CL 7-m 6
10:09:23 11:04:11 2015.1.00665.S 0413_238_a_06_TP After the Fall: Mapping the Molecular Fuel in Post-Starburst Galaxies Smith NA Total Power 6
11:05:52 12:09:25 2015.1.00331.S L1451-we_a_06_7M A Tale of Two Cores: Stellar Birth in the Young L1451 Region Storm NA 7-m 6
11:41:18 12:57:46 2015.1.00040.S ALESS73._a_04_TE Using [CI]to determine the distribution De Breuck and heating mechanism of H2 in a z=4.8 star-forming disk EU 12-m 4
2016-08-04

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:03:25</td>
<td>01:30:59</td>
<td>AG22.36+_h_06_TP</td>
<td>AG22.36+_h_06_TP</td>
<td>Mass assembly in the pre-stellar phase of high-mass star formation</td>
<td>Wang</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>01:10:13</td>
<td>02:31:38</td>
<td>AG22.36+_g_06_TP</td>
<td>mosaico2_a_03_7M</td>
<td>G351.77--0.51: ridge formation caught in the act</td>
<td>Leurini</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:23:13</td>
<td>02:11:53</td>
<td>AG22.36+_h_06_TP</td>
<td>G31.41+0_b_06_TE</td>
<td>Does the magnetic field regulate the collapse in the massive core G31.41+0.31?</td>
<td>Beltran</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>01:35:09</td>
<td>02:22:03</td>
<td>AG22.36+_g_06_TP</td>
<td>mosaico3_a_03_TP</td>
<td>G351.77--0.51: ridge formation caught in the act</td>
<td>Leurini</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>02:22:26</td>
<td>02:50:22</td>
<td>AG22.36+_g_06_TP</td>
<td>AG22.36+_g_06_TP</td>
<td>Mass assembly in the pre-stellar phase of high-mass star formation</td>
<td>Wang</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>02:31:59</td>
<td>03:54:08</td>
<td>HD_16329_a_06_7M</td>
<td>HD_16329_a_06_7M</td>
<td>Understanding the Disk Wind from HDKlaassen 163296</td>
<td>Klaassen</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>02:45:21</td>
<td>04:29:30</td>
<td>sgra_sta_a_06_TE</td>
<td>sgra_sta_a_06_TE</td>
<td>ALMA probes the SagA* Accretion</td>
<td>Murchikova</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:50:41</td>
<td>03:18:05</td>
<td>AG22.36+_j_06_TP</td>
<td>AG22.36+_j_06_TP</td>
<td>Mass assembly in the pre-stellar phase of high-mass star formation</td>
<td>Wang</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>03:19:11</td>
<td>03:46:34</td>
<td>AG22.36+_h_06_TP</td>
<td>AG22.36+_h_06_TP</td>
<td>Mass assembly in the pre-stellar phase of high-mass star formation</td>
<td>Wang</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>03:47:23</td>
<td>04:14:38</td>
<td>AG22.36+_g_06_TP</td>
<td>AG22.36+_g_06_TP</td>
<td>Mass assembly in the pre-stellar phase of high-mass star formation</td>
<td>Wang</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>04:05:12</td>
<td>05:32:34</td>
<td>HD_16329_a_06_7M</td>
<td>HD_16329_a_06_7M</td>
<td>Understanding the Disk Wind from HDKlaassen 163296</td>
<td>Klaassen</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>04:15:25</td>
<td>04:42:45</td>
<td>AG22.36+_i_06_TP</td>
<td>AG22.36+_i_06_TP</td>
<td>Mass assembly in the pre-stellar phase of high-mass star formation</td>
<td>Wang</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>04:43:03</td>
<td>05:10:21</td>
<td>AG22.36+_j_06_TP</td>
<td>AG22.36+_j_06_TP</td>
<td>Mass assembly in the pre-stellar phase of high-mass star formation</td>
<td>Wang</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>04:58:06</td>
<td>05:58:07</td>
<td>BX610_a_06_TE</td>
<td>BX610_a_06_TE</td>
<td>Resolving the molecular ISM in a unique star-forming disk galaxy at z=2</td>
<td>Aravena</td>
<td>CL</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>05:10:41</td>
<td>05:46:38</td>
<td>mosaico2_a_03_TP</td>
<td>mosaico2_a_03_TP</td>
<td>G351.77--0.51: ridge formation caught in the act</td>
<td>Leurini</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>05:32:54</td>
<td>06:48:36</td>
<td>MagBridge_a_06_7M</td>
<td>MagBridge_a_06_7M</td>
<td>Physical Properties and Submillimeter Rubio Excess in low metallicity clouds in the Magellanic Bridge</td>
<td>Rubio</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>05:48:20</td>
<td>06:26:57</td>
<td>mosaico1_a_03_TP</td>
<td>mosaico1_a_03_TP</td>
<td>G351.77--0.51: ridge formation caught in the act</td>
<td>Leurini</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>05:59:21</td>
<td>07:16:03</td>
<td>WD2226-2_a_06_TE</td>
<td>WD2226-2_a_06_TE</td>
<td>The nature and origin of the Solar system scale disk in the Helix Nebula</td>
<td>Ertel</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>06:27:24</td>
<td>07:11:02</td>
<td>NGC_1087_a_06_TP</td>
<td>NGC_1087_a_06_TP</td>
<td>Promoting Diversity: ISM Physics and Star Formation across Different Environments</td>
<td>Roman-Duval</td>
<td>CL</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>06:53:37</td>
<td>08:10:31</td>
<td>NGC_1433_b_06_7M</td>
<td>NGC_1433_b_06_7M</td>
<td>Promoting Diversity: ISM Physics and Star Formation across Different Environments</td>
<td>Blanc</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>07:17:59</td>
<td>08:01:55</td>
<td>NGC_1300_a_06_TP</td>
<td>NGC_1300_a_06_TP</td>
<td>Promoting Diversity: ISM Physics and Star Formation across Different Environments</td>
<td>Blanc</td>
<td>CL</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>07:19:47</td>
<td>08:44:25</td>
<td>WMH_5_a_06_TE</td>
<td>WMH_5_a_06_TE</td>
<td>Resolving a main-sequence star-forming galaxy merger at redshift 6</td>
<td>Willott</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>08:02:14</td>
<td>08:45:48</td>
<td>NGC_1087_a_06_TP</td>
<td>NGC_1087_a_06_TP</td>
<td>Promoting Diversity: ISM Physics and Star Formation across Different Environments</td>
<td>Roman-Duval</td>
<td>CL</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>08:12:52</td>
<td>09:34:12</td>
<td>NGC_1300_a_06_TP</td>
<td>NGC_1300_a_06_TP</td>
<td>Promoting Diversity: ISM Physics and Star Formation across Different Environments</td>
<td>Blanc</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>08:46:50</td>
<td>09:41:26</td>
<td>0413_238_a_06_TP</td>
<td>0413_238_a_06_TP</td>
<td>After the Fall: Mapping the Molecular Fuel in Post-Starburst Galaxies</td>
<td>Smith</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>08:47:39</td>
<td>09:56:37</td>
<td>AG22.36+_g_06_TP</td>
<td>AG22.36+_g_06_TP</td>
<td>Gas fueling and outflow around massive black holes</td>
<td>Combes</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>09:35:23</td>
<td>10:57:39</td>
<td>AG22.36+_g_06_TP</td>
<td>AG22.36+_g_06_TP</td>
<td>Promoting Diversity: ISM Physics and Star Formation across</td>
<td>Blanc</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
</tbody>
</table>

Project Titles:
- Promoting Diversity: ISM Physics and Star Formation across Different Environments
- Gas fueling and outflow around massive black holes
- Resolving a main-sequence star-forming galaxy merger at redshift 6
- Understanding the Disk Wind from HDKlaassen 163296
- ALMA probes the SagA* Accretion
- Mass assembly in the pre-stellar phase of high-mass star formation
- The nature and origin of the Solar system scale disk in the Helix Nebula
- Resolving the molecular ISM in a unique star-forming disk galaxy at z=2
- Physical Properties and Submillimeter Rubio Excess in low metallicity clouds in the Magellanic Bridge
- G351.77--0.51: ridge formation caught in the act
- Mass assembly in the pre-stellar phase of high-mass star formation

13:51:56 15:14:06 2015.1.01339.S HG2794_a_06_7M Identifying the transition phase of the clump mass function toward the IMF Olmi EU 12-m 4

15:06:55 16:09:46 2015.1.01452.S 11-16_b_03_TE CO spectral scanning of z>6.5 QSO candidates selected from PanSTARRS Koptelova EA 12-m 3

15:15:12 16:37:19 2015.1.01339.S HG2907_a_06_7M Identifying the transition phase of the clump mass function toward the IMF Olmi EU 7-m 6

16:11:13 17:11:07 2015.1.01320.S G09.97_a_04_TE Dissecting starbursts at z~3.6 through Omont multi-line H2O imaging EU 12-m 4

17:11:50 17:44:16 2015.1.01271.S RW_LMi_a_03_TE Circumstellar chemistry in carbon stars: How unique is IRC+10216? Keller EU 12-m 3

2016-08-05

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>05:47:27</td>
<td>06:51:37</td>
<td>2015.1.00734.T Neutron_b_07_TE</td>
<td>Exploring the nature of relativistic jets in neutron star X-ray binaries - Part 2</td>
<td>Diaz Trigo</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>06:52:46</td>
<td>08:10:22</td>
<td>2015.1.00762.S WD2226-2_a_06_TE</td>
<td>The nature and origin of the Solar system scale disk in the Helix Nebula</td>
<td>Ertel</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>08:20:11</td>
<td>09:35:22</td>
<td>2015.1.00834.S WMH_5_a_06_TE</td>
<td>Resolving a main-sequence star-forming galaxy merger at redshift 6</td>
<td>Willott</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>09:35:26</td>
<td>10:30:03</td>
<td>2015.1.00665.S 0413_238_a_06_TP</td>
<td>After the Fall: Mapping the Molecular Fuel in Post-Starburst Galaxies</td>
<td>Smith</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>09:49:57</td>
<td>11:05:33</td>
<td>2015.1.00834.S WMH_5_a_06_TE</td>
<td>Resolving a main-sequence star-forming galaxy merger at redshift 6</td>
<td>Willott</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
2016-08-07

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>03:24:29</td>
<td>04:04:41</td>
<td>2015.1.00601.S</td>
<td>mosaic2_a_03_TP</td>
<td>G351.77--0.51: ridge formation caught in the act</td>
<td>Leurini</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>03:24:30</td>
<td>04:45:14</td>
<td>2015.1.00230.S</td>
<td>NGC6334-b_03_7M</td>
<td>Mass accretion flows in high-mass star formation</td>
<td>Liu</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>03:49:25</td>
<td>04:19:45</td>
<td>2015.1.00734.T</td>
<td>Neutron_b_03_TE</td>
<td>Exploring the nature of relativistic jets in neutron star X-ray binaries - Part 2</td>
<td>Diaz Trigo</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>04:18:39</td>
<td>05:10:38</td>
<td>2015.1.01014.S</td>
<td>SDC338.3_a_03_TP</td>
<td>What can hubs tell us on massive star formation?</td>
<td>Peretto</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>04:21:06</td>
<td>04:59:41</td>
<td>2015.1.01452.S</td>
<td>1-3_b_03_TE</td>
<td>CO spectral scanning of z>6.5 QSO candidates selected from PanSTARRS</td>
<td>Koptelova</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>05:10:45</td>
<td>06:25:04</td>
<td>2015.1.00212.S</td>
<td>mADF22_a_03_TE</td>
<td>Dense Molecular Gas Mapping of the Node in the Cosmic Web at z=3.1</td>
<td>Umehata</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>06:27:56</td>
<td>07:42:30</td>
<td>2015.1.00212.S</td>
<td>mADF22_a_03_TE</td>
<td>Dense Molecular Gas Mapping of the Node in the Cosmic Web at z=3.1</td>
<td>Umehata</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>07:52:32</td>
<td>08:26:06</td>
<td>2015.1.00587.S</td>
<td>CIG55.a_03_TE</td>
<td>Why do isolated galaxies host red pseudobulges?</td>
<td>Verdes-Montenegro</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>08:46:27</td>
<td>10:01:16</td>
<td>2015.1.00834.S</td>
<td>WMH_5_a_06_TE</td>
<td>Resolving a main-sequence star-forming galaxy merger at redshift 6</td>
<td>Smith</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
</tbody>
</table>