ALMA Observing Activity from 2016-09-30T17:59:00 to 2016-10-10T18:00:00

QA0 pass executions

2016-09-30

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>22:16:06</td>
<td>22:52:25</td>
<td>2016.1.00010.S</td>
<td>J1851+00_a_06_TM1</td>
<td>Resolving GMCs using CO Absorption Toward Compact QSOs Directly Behind the MW Disk</td>
<td>Koda</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>22:20:11</td>
<td>23:51:07</td>
<td>2016.1.00288.S</td>
<td>G29.96-0_a_06_TP</td>
<td>Tracing the outflows from disks around O-type (proto)stars</td>
<td>Cesaroni</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>22:29:41</td>
<td>00:07:10</td>
<td>2016.1.00875.S</td>
<td>50kms_a_06_7M</td>
<td>Formation, State, and Structure of all Major CMZ Clouds</td>
<td>Kauffmann</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>23:17:28</td>
<td>23:35:08</td>
<td>2016.1.00223.S</td>
<td>G31.41+0_a_03_TM2</td>
<td>Dissecting the monolithic molecular core G31.41+0.31</td>
<td>Beltran</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>23:37:19</td>
<td>00:18:31</td>
<td>2016.1.00010.S</td>
<td>J1924+15_a_06_TM1</td>
<td>Resolving GMCs using CO Absorption Toward Compact QSOs Directly Behind the MW Disk</td>
<td>Koda</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
</tbody>
</table>

2016-10-01

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:26:59</td>
<td>01:59:05</td>
<td>2016.1.00875.S</td>
<td>50kms_a_06_7M</td>
<td>Full synthesis imaging of the AFGL 3068 spiral pattern - deriving binary properties</td>
<td>Kauffmann</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>00:37:13</td>
<td>01:59:44</td>
<td>2016.1.00007.S</td>
<td>AFGL3068_a_06_TP</td>
<td>Full synthesis imaging of the AFGL 3068 spiral pattern - deriving binary properties</td>
<td>Kim</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>00:47:56</td>
<td>02:01:30</td>
<td>2016.1.00051.S</td>
<td>IRAS_205_a_06_TM1</td>
<td>AGN feedback and molecular line flux Imanishi ratios in dust/gas-rich ultraluminous infrared galaxies</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>03:44:52</td>
<td>05:07:12</td>
<td>2016.1.00007.S</td>
<td>AFGL3068_a_06_TP</td>
<td>Full synthesis imaging of the AFGL 3068 spiral pattern - deriving binary properties</td>
<td>Kim</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>03:47:13</td>
<td>05:41:43</td>
<td>2016.1.01435.S</td>
<td>NGC_628_a_07_7M</td>
<td>ALMA-LEGUS: Connecting Star Formation to its Fuel</td>
<td>Dale</td>
<td>NA</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>04:03:19</td>
<td>04:27:34</td>
<td>2016.1.01481.S</td>
<td>3C_9_a_06_TM1</td>
<td>Measuring the Spectral Evolution, Structure, and Speed of Extragalactic Jets with ALMA</td>
<td>Meyer</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>04:38:59</td>
<td>06:12:22</td>
<td>2016.1.00643.S</td>
<td>AS1063_A_07_TM1</td>
<td>High-resolution CO observations of clumpy strongly-lensed galaxies at 0.6<z<1.5</td>
<td>Richard</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>05:07:56</td>
<td>06:30:03</td>
<td>2016.1.00007.S</td>
<td>AFGL3068_a_06_TP</td>
<td>Full synthesis imaging of the AFGL 3068 spiral pattern - deriving binary properties</td>
<td>Kim</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>05:50:02</td>
<td>07:44:13</td>
<td>2016.1.01435.S</td>
<td>NGC_628_a_07_7M</td>
<td>ALMA-LEGUS: Connecting Star Formation to its Fuel</td>
<td>Dale</td>
<td>NA</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>06:23:47</td>
<td>07:27:50</td>
<td>2016.1.00776.S</td>
<td>UDS-01_a_09_TM1</td>
<td>Interstellar Medium of a million solar low mass, low metallicity (6% solar) star-forming dwarf galaxy at z=1.847</td>
<td>Cooray</td>
<td>NA</td>
<td>12-m</td>
<td>9</td>
</tr>
<tr>
<td>06:57:57</td>
<td>08:23:11</td>
<td>2016.1.00209.S</td>
<td>L1551_IR_a_06_TP</td>
<td>Multi-scale disk and envelope kinematics around the most extremely accreting young stars</td>
<td>Takami</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>07:28:44</td>
<td>08:40:51</td>
<td>2016.1.01520.S</td>
<td>Per33_L1_a_07_TM1</td>
<td>Spiral Structure and Clump Kinematics in the Gravitationally Unstable Disk Around L1448 IRS3B</td>
<td>Tobin</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>07:48:07</td>
<td>09:04:49</td>
<td>2016.1.00240.S</td>
<td>L1544_b_07_7M</td>
<td>On the brink of star formation</td>
<td>Caselll</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>08:25:36</td>
<td>09:55:42</td>
<td>2016.1.00063.S</td>
<td>LMC0NT19_a_06_TP</td>
<td>Zooming in on the parsec-scale structure of CO gas at low metallicity and its relation to star formation</td>
<td>Roman-Duval</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>08:58:11</td>
<td>10:14:07</td>
<td>2016.1.00308.S</td>
<td>N159-W_a_06_TM1</td>
<td>Searching for the first extragalactic hot molecular cores</td>
<td>Schilke</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>09:05:21</td>
<td>10:14:06</td>
<td>2016.1.00063.S</td>
<td>LMC0NT19_a_06_7M</td>
<td>Zooming in on the parsec-scale structure of CO gas at low metallicity and its relation to star formation</td>
<td>Roman-Duval</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>10:28:42</td>
<td>11:21:21</td>
<td>2016.1.01269.S</td>
<td>RXJ0820.a_07_TM1</td>
<td>Stimulated AGN feedback in cluster cores</td>
<td>McNamara</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>12:54:21</td>
<td>13:26:11</td>
<td>2016.1.01202.S</td>
<td>R_Leo_a_06_TM2</td>
<td>Resolving the sub-arcsec structure surrounding the AGB star R Leo</td>
<td>Fonfria</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
</tbody>
</table>

2016-10-02

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>02:37:51</td>
<td>04:20:56</td>
<td>2016.1.00007.S</td>
<td>AFGL3068_a_06_7M</td>
<td>Full synthesis imaging of the AFGL 3068 spiral pattern -</td>
<td>Kim</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
</tr>
</tbody>
</table>
toward Understanding of the Millimeter Excess in Nearby AGNs
Disentangling the Origin of the Jets with ALMA
Structure, and Speed of Extragalactic Measuring the Spectral Evolution, phase Si-C molecules and dust grains
Large spatial scale interaction of gas outflow of ESO320-G030
Dissecting the clumpy structure of the Mpc between z=1-5
Galaxies: A Survey of 100,000 Cubic Measuring Molecular Gas in Unseen Nitrogen Abundance in TW Hya
The First Constraints on the Volatile and its relation to star formation
structure of CO gas at low metallicity
Zooming in on the parsec-scale structure of CO gas at low metallicity
Zooming in on the parsec-scale structure of CO gas at low metallicity
Origin and variability of the (sub-)mm continuum emission in the changing-look AGN Mrk590
Illuminate NGC 253 Nuclear Starburst Nakanishi by Ionized Gas Imaging with Parsec Scale Resolution
 Illuminate NGC 253 Nuclear Starburst Nakanishi by Ionized Gas Imaging with Parsec Scale Resolution
 Illuminate NGC 253 Nuclear Starburst Nakanishi by Ionized Gas Imaging with Parsec Scale Resolution
 Tracing the Origins of Nitrogen Bearing Organics Toward Orion KL
 The substructure of molecular clouds in the LMC
 The substructure of molecular clouds in the LMC
 The substructure of molecular clouds in the LMC
 The brink of star formation
 The brink of star formation
 The brink of star formation
 The First Constraints on the Volatile Nitrogen Abundance in TW Hya
 The First Constraints on the Volatile Nitrogen Abundance in TW Hya
 The First Constraints on the Volatile Nitrogen Abundance in TW Hya
 Multi-scale disk and envelope kinematics around the most extremely accreting young stars
 Multi-scale disk and envelope kinematics around the most extremely accreting young stars
 Multi-scale disk and envelope kinematics around the most extremely accreting young stars
 Dissecting the clumpy structure of the Pereira Santaella EU SF powered massive molecular outflow of ESO320-G030
 Dissecting the clumpy structure of the Pereira Santaella EU SF powered massive molecular outflow of ESO320-G030
 Large spatial scale interaction of gas phase Si-C molecules and dust grains
 Large spatial scale interaction of gas phase Si-C molecules and dust grains
 Large spatial scale interaction of gas phase Si-C molecules and dust grains
 Measuring the Spectral Evolution, Structure, and Speed of Extragalactic Jets with ALMA
 Measuring the Spectral Evolution, Structure, and Speed of Extragalactic Jets with ALMA
 Measuring the Spectral Evolution, Structure, and Speed of Extragalactic Jets with ALMA

Kim
Kim
Kim
Roman-Duval
Roman-Duval
Roman-Duval
Roman-Duval
Carroll
Carroll
Carroll
Schwarz
Schwarz
Schwarz
Keating
Keating
Keating
Inoue
Inoue
Inoue

NA
NA
NA
EU
15:54:31 17:18:39 2016.1.01149.S COSMOS_a_03_7M Nature of AGN Coronae Measuring Molecular Gas in Unseen Galaxies: A Survey of 100,000 Cubic Mpc between z=1-5 Keating NA 7-m 3
16:26:59 16:42:23 2016.1.01140.S IC_4329A_a_04_TM1 Disentangling the Origin of the Millimeter Excess in Nearby AGNs toward Understanding of the Nature of AGN Coronae Inoue EA 12-m 4
17:19:41 17:45:10 2016.1.00437.S NGC806_a_06_TM2 WISDOM: Extending black hole demographics across the mass-size plane with ALMA Davis EU 12-m 6
17:29:33 19:11:21 2016.1.00164.S M83_a_06_7M Chemical Diagnostics of Extragalactic Kirigami ISM: Shock-Induced Evolution in M83 Nucleus EA 7-m 6
17:46:23 18:03:30 2016.1.01140.S IC_4329A_a_06_TM1 Disentangling the Origin of the Millimeter Excess in Nearby AGNs toward Understanding of the Nature of AGN Coronae Inoue EA 12-m 6
17:58:44 19:32:23 2016.1.00288.S G345.49+_a_06_TP Tracing the outflows from disks around O-type (proto)stars Cesaroni EU Total Power 6
19:57:41 20:56:22 2016.1.00288.S G17.64+0_a_06_TP Tracing the outflows from disks around O-type (proto)stars Cesaroni EU Total Power 6
19:59:03 20:56:44 2016.1.00875.S SgrC_a_06_7M Formation, State, and Structure of all Major CMZ Clouds Kauffmann EU 7-m 6

2016-10-03

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:45:53</td>
<td>02:02:07</td>
<td>2016.1.00140.S ESO148-i_a_03_TM1 Molecular Gas in Local Merging ULIRGs Iono EA 12-m 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02:41:29</td>
<td>03:24:49</td>
<td>2016.1.0007.S AFGL3068_a_06_7M Full synthesis imaging of the AFGL 3068 spiral pattern - deriving binary properties Kim EA 7-m 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02:44:09</td>
<td>03:06:16</td>
<td>2016.1.0007.S AFGL3068_a_06_TP Full synthesis imaging of the AFGL 3068 spiral pattern - deriving binary properties Kim EA Total Power 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:04:04</td>
<td>05:21:37</td>
<td>2016.1.00643.S A370-arc_a_06_TM1 High-resolution CO observations of clumpy strongly-lensed galaxies at 0.6<z<1.5 Richard EU 12-m 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:06:35</td>
<td>05:34:21</td>
<td>2016.1.0063.S SMC0N69_a_06_TP Zooming in on the parsec-scale structure of CO gas at low metallicity and its relation to star formation Roman-Duval NA Total Power 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:25:09</td>
<td>05:56:26</td>
<td>2016.1.0063.S SMC0N69_a_06_7M Zooming in on the parsec-scale structure of CO gas at low metallicity and its relation to star formation Roman-Duval NA 7-m 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05:28:24</td>
<td>06:36:50</td>
<td>2016.1.00643.S A370-arc_a_06_TM1 High-resolution CO observations of clumpy strongly-lensed galaxies at 0.6<z<1.5 Richard EU 12-m 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05:45:55</td>
<td>07:13:35</td>
<td>2016.1.0063.S SMC0N69_a_06_TP Zooming in on the parsec-scale structure of CO gas at low metallicity and its relation to star formation Roman-Duval NA Total Power 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05:57:06</td>
<td>07:51:21</td>
<td>2016.1.01435.S NGC_628_a_07_7M ALMA-LEGUS: Connecting Star Formation to its Fuel Dale NA 7-m 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:37:25</td>
<td>07:45:38</td>
<td>2016.1.00643.S A370-arc_a_06_TM1 High-resolution CO observations of clumpy strongly-lensed galaxies at 0.6<z<1.5 Richard EU 12-m 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:15:18</td>
<td>08:44:55</td>
<td>2016.1.0063.S LMC0NT19_a_06_TP Zooming in on the parsec-scale structure of CO gas at low metallicity and its relation to star formation Roman-Duval NA Total Power 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:45:55</td>
<td>09:03:19</td>
<td>2016.1.00643.S A370-arc_a_06_TM1 High-resolution CO observations of clumpy strongly-lensed galaxies at 0.6<z<1.5 Richard EU 12-m 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:52:00</td>
<td>09:18:24</td>
<td>2016.1.0063.S LMC0NT19_a_06_7M Zooming in on the parsec-scale structure of CO gas at low metallicity and its relation to star formation Roman-Duval NA 7-m 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:48:36</td>
<td>10:05:28</td>
<td>2016.1.00203.S LMC_GMC2_a_06_TP Tracing evolution of giant molecular clouds in the Large Magellanic Cloud Kawamura EA Total Power 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
09:04:00 10:18:39 2016.1.00643.S A370-arc_a_06_TM1 High-resolution CO observations of clumpy strongly-lensed galaxies at 0.6<z<1.5 Richard EU 12-m 6
09:19:00 10:45:09 2016.1.00663.S LMC0NT19_a_06_7M Zooming in on the parsec-scale structure of CO gas at low metallicity and its relation to star formation Roman-Duval NA 7-m 6
10:19:18 11:37:54 2016.1.00643.S A521_a_06_TM1 High-resolution CO observations of clumpy strongly-lensed galaxies at 0.6<z<1.5 Richard EU 12-m 6
10:47:01 11:55:58 2016.1.00063.S LMC0NT19_a_03_7M Zooming in on the parsec-scale structure of CO gas at low metallicity and its relation to star formation Roman-Duval NA 7-m 3
11:25:54 12:00:55 2016.1.00648.S J1023+19_a_06_TP How is Gas Organized in a Tidal Dwarf Galaxy? Querejeta EU Total Power 6
22:04:49 23:02:05 2016.1.00571.S Sz_123A_a_03_TM1 Demographics of Grain Growth in the Lupus Protoplanetary Disks Tazzari EU 12-m 3
23:02:56 23:57:40 2016.1.00571.S Sz_123A_a_03_TM1 Demographics of Grain Growth in the Lupus Protoplanetary Disks Tazzari EU 12-m 3
23:48:12 00:35:10 2016.1.00875.S 20kms_b_06_7M Formation, State, and Structure of all Major CMZ Clouds Kauffmann EU 7-m 6
23:59:43 00:34:34 2016.1.01162.S G357_a_03_TP Evolutionary sequence for the fragmentation of high line-mass filaments Kainulainen EU Total Power 3

2016-10-04

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:08:41</td>
<td>00:56:56</td>
<td>HD168142_a_06_TM2</td>
<td>Detecting the kinematical signature of accreting protoplanets with ALMA long baselines</td>
<td>Perez</td>
<td>CL</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>01:14:39</td>
<td>02:36:47</td>
<td>AFGL3068_a_06_TP</td>
<td>Full synthesis imaging of the AFGL 3068 spiral pattern - deriving binary properties</td>
<td>Kim</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>01:17:09</td>
<td>02:59:46</td>
<td>AFGL3068_a_06_7M</td>
<td>Full synthesis imaging of the AFGL 3068 spiral pattern - deriving binary properties</td>
<td>Kim</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>01:18:10</td>
<td>02:51:01</td>
<td>AS1063_A_a_07_TM1</td>
<td>High-resolution CO observations of clumpy strongly-lensed galaxies at 0.6<z<1.5</td>
<td>Richard</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>02:37:05</td>
<td>03:59:21</td>
<td>AFGL3068_a_06_TP</td>
<td>Full synthesis imaging of the AFGL 3068 spiral pattern - deriving binary properties</td>
<td>Kim</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>03:16:28</td>
<td>03:40:12</td>
<td>4C_08.64_a_06_TM1</td>
<td>Measuring the Spectral Evolution, Structure, and Speed of Extragalactic Jets with ALMA</td>
<td>Meyer</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>03:18:03</td>
<td>05:00:58</td>
<td>AFGL3068_a_06_7M</td>
<td>Full synthesis imaging of the AFGL 3068 spiral pattern - deriving binary properties</td>
<td>Kim</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>03:53:41</td>
<td>04:56:59</td>
<td>Taffy_co_a_06_TM1</td>
<td>After the Storm: Mapping the Highly Disturbed Molecular Gas in the Taffy Galaxies and Bridge</td>
<td>Appleton</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>03:59:56</td>
<td>05:27:51</td>
<td>SMCON69_a_06_TP</td>
<td>Zooming in on the parsec-scale structure of CO gas at low metallicity and its relation to star formation</td>
<td>Roman-Duval</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>05:01:46</td>
<td>06:11:31</td>
<td>SPT0346-a_07_TM1</td>
<td>HD as a powerful tool to trace gas flows in primordial galaxies</td>
<td>Maiolino</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>05:23:33</td>
<td>06:22:29</td>
<td>SPT0300-a_07_7M</td>
<td>An ACA N+ survey of z=3-7 DSFGs from the South Pole Telescope survey</td>
<td>Chapman</td>
<td>NA</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>05:28:28</td>
<td>06:39:35</td>
<td>ngc_602_b_06_TP</td>
<td>SMC NGC 602: an exemplary test of low-metallicity star formation and GMC evolution.</td>
<td>Indebetouw</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>06:23:07</td>
<td>07:27:52</td>
<td>SPT0125-a_07_7M</td>
<td>An ACA N+ survey of z=3-7 DSFGs from the South Pole Telescope survey</td>
<td>Chapman</td>
<td>NA</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>06:35:07</td>
<td>07:48:17</td>
<td>Per33_L1_a_07_TM1</td>
<td>Spiral Structure and Clump Kinematics in the Gravitationally Unstable Disk Around L1448 IRS3B</td>
<td>Tobin</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>06:40:10</td>
<td>07:51:32</td>
<td>ngc_602_b_06_TP</td>
<td>SMC NGC 602: an exemplary test of low-metallicity star formation</td>
<td>Indebetouw</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
and GMC evolution.
High-resolution CO observations of clumpy strongly-lensed galaxies at 0.6<z<1.5 Richard EU 12-m 6

Tracing evolution of giant molecular clouds in the Large Magellanic Cloud Kawamura EA Total Power 6

After the Fall: Zooming In on the Molecular Fuel in Post-Starburst Galaxies Smith NA 12-m 6

The fate of star-forming clumps during Freundlich the winding-down of star formation EU 12-m 6

How is Gas Organized in a Tidal Dwarf Galaxy? Querejeta EU Total Power 6

An ACA N+ survey of z=3-7 DSFGs from the South Pole Telescope survey Chapman NA 7-m 7

Spatially-resolved star formation at high-z; are AGN host galaxies special? Harrison EU 12-m 7

How is Gas Organized in a Tidal Dwarf Galaxy? Querejeta EU Total Power 6

How is Gas Organized in a Tidal Dwarf Galaxy? Querejeta EU 7-m 6

Molecular Clouds and Star Formation: Sakamoto Across M83 EA Total Power 6

Where does the Faraday rotation in M87 come from? Marti-Vidal EU 12-m 3

Molecular Clouds and Star Formation: Sakamoto Across M83 EA Total Power 6

Where does the Faraday rotation in M87 come from? Marti-Vidal EU 12-m 3

Demographics of Grain Growth in the Lupus Protoplanetary Disks Tazzari EU 12-m 3

Molecular Clouds and Star Formation: Sakamoto Across M83 EA Total Power 6

Demographics of Grain Growth in the Lupus Protoplanetary Disks Tazzari EU 12-m 3

Demographics of Grain Growth in the Lupus Protoplanetary Disks Tazzari EU 12-m 3

Mass Loss from OH/IR Stars in the Inner Galactic Bulge Sargent NA 12-m 6

Evolutionary sequence for the fragmentation of high line-mass filaments Kainulainen EU Total Power 3

Evolutionary sequence for the fragmentation of high line-mass filaments Kainulainen EU 7-m 3

Probing magnetic fields in the inner envelopes and outer disks of Class 0 protostars Hull NA 12-m 3

Evolutionary sequence for the fragmentation of high line-mass filaments Kainulainen EU Total Power 3

Infall Toward Massive Starless Clump Shirley Candidates NA 7-m 3

Probing magnetic fields in the inner envelopes and outer disks of Class 0 protostars Hull NA 12-m 3

Evolutionary sequence for the fragmentation of high line-mass filaments Kainulainen EU Total Power 3

The most massive galaxy cluster above redshift 1: anatomy of a cool core Burkutean EU 7-m 3

The nature of dark matter in galaxy collisions Massey EU 12-m 3

The nature of dark matter in galaxy collisions Massey EU 12-m 3

The most massive galaxy cluster above redshift 1: anatomy of a cool core Burkutean EU 7-m 3

Zooming in on the parsec-scale structure of CO gas at low Roman-Duval NA Total Power 6

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:48:29</td>
<td>02:12:44</td>
<td>2016.1.01175.S</td>
<td>SPT-CL_2_a_03_7M</td>
<td>The most massive galaxy cluster above redshift 1: anatomy of a cool core</td>
<td>Burkutean</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>00:52:43</td>
<td>01:58:48</td>
<td>2016.1.01201.S</td>
<td>Abell382_a_03_TM1</td>
<td>The nature of dark matter in galaxy collisions</td>
<td>Massey</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>02:13:17</td>
<td>03:19:46</td>
<td>2016.1.01201.S</td>
<td>Abell382_a_03_TM1</td>
<td>The nature of dark matter in galaxy collisions</td>
<td>Massey</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>02:15:19</td>
<td>03:34:40</td>
<td>2016.1.01175.S</td>
<td>SPT-CL_2_a_03_7M</td>
<td>The most massive galaxy cluster above redshift 1: anatomy of a cool core</td>
<td>Burkutean</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>02:31:54</td>
<td>03:59:43</td>
<td>2016.1.00063.S</td>
<td>SMC0N69_a_06_TP</td>
<td>Zooming in on the parsec-scale structure of CO gas at low</td>
<td>Roman-Duval</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
</tbody>
</table>
metallicity and its relation to star formation

After the Storm: Mapping the Highly Disturbed Molecular Gas in the Taffy Galaxies and Bridge

03:21:43 04:25:53 2016.1.01037.S Taffy_co_a_06_TM1

An ACA N+ survey of z=3-7 DSFGs from the South Pole Telescope survey

03:35:11 04:37:14 2016.1.00133.T SPT2357_-a_07_7M

SMC NGC 602: an exemplary test of low-metallicity star formation and GMC evolution.

04:00:53 05:12:06 2016.1.00360.S ngc_602_b_06_TP

ALMA-LEGUS: Connecting Star Formation to its Fuel

04:37:58 06:33:14 2016.1.01435.S NGC_628_a_07_7M

SMC NGC 602: an exemplary test of low-metallicity star formation and GMC evolution.

05:12:38 06:23:54 2016.1.00360.S ngc_602_b_06_TP

An ACA N+ survey of z=3-7 DSFGs from the South Pole Telescope survey

07:44:28 08:31:46 2016.1.00133.T SPT0441_-a_06_7M

Tracing evolution of giant molecular clouds in the Large Magellanic Cloud

07:46:34 09:00:37 2016.1.00203.S N171_a_06_TP

Constraining the Mass of the Planet in Nomura the Gap Discovered in the TW Hya Disk

08:33:45 09:28:08 2016.1.00133.T SPT0529-_a_07_7M

How is Gas Organized in a Tidal Dwarf Galaxy?

09:01:45 10:17:50 2016.1.00203.S N206D_a_06_TP

Dense, Warm Molecular Gas and StarEvans Formation in CO Luminous QSO Hosts

How is Gas Organized in a Tidal Dwarf Galaxy?

How is Gas Organized in a Tidal Dwarf Galaxy?

Molecular Clouds and Star Formation: Sakamoto Across M83

The Gas Mass and ISM Heating in Normal Galaxies Near the Peak of Star Formation Activity

14:47:11 15:57:50 2016.1.00386.S MB3_c_06_TP

Chemical Diagnostics of Extragalactic Harada ISM: The Case of A Starburst-Dominant Merger

AGN feedback and molecular line flux imanishi ratios in dust/gas-rich ultraluminous infrared galaxies

22:18:36 23:26:26 2016.1.00051.S IRAS_205_a_06_TM1

Comparing two externally irradiated protostars in Ophiuchus

Hunting down the cold organic reservoir in protoplanetary disks

22:19:53 00:22:46 2016.1.00884.S hd163296_a_07_7M

AGN feedback and molecular line flux imanishi ratios in dust/gas-rich ultraluminous infrared galaxies

23:47:18 00:55:18 2016.1.00051.S IRAS_205_a_06_TM1

Zooming in on the parsec-scale structure of CO gas at low metallicity and its relation to star

04:07:50 04:04:19 2016.1.00063.S SMCON69_a_06_7M

2016-10-06

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:17:33</td>
<td>01:25:44</td>
<td>2016.1.01162.S G357_a_03_TP</td>
<td></td>
<td>Evolutionary sequence for the fragmentation of high line-mass filaments</td>
<td>Kainulainen</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>00:44:23</td>
<td>02:21:39</td>
<td>2016.1.00875.S 20kms_b_06_7M</td>
<td></td>
<td>Formation, State, and Structure of all Major CMZ Clouds</td>
<td>Kauffmann</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>01:01:24</td>
<td>02:01:54</td>
<td>2016.1.00051.S IRAS_224_a_06_TM1</td>
<td></td>
<td>AGN feedback and molecular line flux imanishi ratios in dust/gas-rich ultraluminous infrared galaxies</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>02:03:52</td>
<td>03:10:12</td>
<td>2016.1.00051.S IRAS_224_a_06_TM1</td>
<td></td>
<td>AGN feedback and molecular line flux imanishi ratios in dust/gas-rich ultraluminous infrared galaxies</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>02:36:19</td>
<td>04:07:50</td>
<td>2016.1.00063.S SMCON69_a_06_7M</td>
<td></td>
<td>Zooming in on the parsec-scale structure of CO gas at low metallicity and its relation to star</td>
<td>Roman-Duval</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
</tbody>
</table>
04:44:28 05:57:26 2016.1.01037.S Taffy_co_a_06_Tm1 After the Storm: Mapping the Highly Disturbed Molecular Gas in the Taffy Galaxies and Bridge Appleton NA 12-m 6
06:01:07 06:41:13 2016.1.01488.S XZ_Tau_B_A_06_TM2 Dwarf disks and orbital motions in the triple XZ Tau system Anglada EU 12-m 6
06:34:08 08:28:39 2016.1.01435.S NGC_628_a_07_7M ALMA-LEGUS: Connecting Star Formation to its Fuel Dale NA 7-m 7
06:43:01 07:49:31 2016.1.01018.S FW_Tau_A_a_07_TM1 The Masses, Diversity, and Evolution of Circum-Planetary Disks Bowler NA 12-m 7
07:53:09 09:17:25 2016.1.01475.S HH212_a_07_TM1 Are Class 0 molecular jets really molecular? ALMA insight into the origin of protostellar jets Codella EU 12-m 7
08:09:46 09:24:01 2016.1.00203.S N171_a_06_TP Tracing evolution of giant molecular clouds in the Large Magellanic Cloud Kawamura EA Total Power 6
08:29:18 09:46:24 2016.1.00133.T SPT0516_a_07_7M An ACA N+ survey of z=3-7 DSFGs from the South Pole Telescope survey Chapman NA 7-m 7
09:40:04 11:03:45 2016.1.01475.S HH212_a_07_TM1 Are Class 0 molecular jets really molecular? ALMA insight into the origin of protostellar jets Codella EU 12-m 7
11:28:48 12:36:35 2016.1.00389.S HH111MM_a_06_TM1 Characterizing the Envelope-Disk Transition in the Young Protostellar System HH 111 Lee NA 12-m 6
12:07:26 12:59:26 2016.1.00133.T SPT0544_a_07_7M An ACA N+ survey of z=3-7 DSFGs from the South Pole Telescope survey Chapman NA 7-m 7
13:16:38 14:01:44 2016.1.01512.S zC412369_a_03_TM1 The Gas Mass and ISM Heating in Normal Galaxies Near the Peak of Star Formation Activity Herrera-Camus EU 12-m 3
14:05:38 15:05:52 2016.1.00344.S HD100546_a_06_TM2 Detecting the kinematical signature of Perez accreting protoplanets with ALMA long baselines CL 12-m 6
15:12:47 16:25:35 2016.1.00991.S NGC_5331B_a_03_TM1 High Resolution Imaging of the Diffuse and Dense Gas in the Early Stage Merging Galaxy NGC 5331 Michiyama EA 12-m 3
16:57:43 17:50:59 2016.1.00571.S Sz_74_a_03_TM1 Demographics of Grain Growth in the Tazzari Lupus Protoplanetary Disks EU 12-m 3
17:00:19 18:22:19 2016.1.00164.S M83_a_03_7M Chemical Diagnostics of Extragalactic Harada ISM: Shock-Induced Evolution in M83 Nucleus EA 7-m 3
17:54:09 18:50:59 2016.1.00571.S Sz_74_a_03_TM1 Demographics of Grain Growth in the Tazzari Lupus Protoplanetary Disks EU 12-m 3
2016-10-07

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:50:29</td>
<td>02:56:13</td>
<td>2016.1.00051.S</td>
<td>IRAS_224_a_06_TM1</td>
<td>AGN feedback and molecular line flux ratios in dust/gas-rich ultraluminous infrared galaxies</td>
<td>Imanishi</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:56:38</td>
<td>04:21:34</td>
<td>2016.1.01333.S</td>
<td>GRB_0507_a_06_TM1</td>
<td>Identifying the mysterious radio source close to the optical position of the short GRB 050709</td>
<td>Klose</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>04:26:07</td>
<td>05:19:43</td>
<td>2016.1.00031.S</td>
<td>JVAS0218_a_04_TM1</td>
<td>The molecular absorber toward B0218+357</td>
<td>Muller</td>
<td>EU</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>05:20:53</td>
<td>06:28:30</td>
<td>2016.1.00031.S</td>
<td>JVAS0218_b_04_TM1</td>
<td>The molecular absorber toward B0218+357</td>
<td>Muller</td>
<td>EU</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>07:29:44</td>
<td>09:04:09</td>
<td>2016.1.01541.S</td>
<td>L1527_a_04_TP</td>
<td>Feeding the protoplanetary disk: resolving the 1000 au kinematics</td>
<td>Harsono</td>
<td>EU</td>
<td>Total Power 4</td>
<td></td>
</tr>
<tr>
<td>07:43:38</td>
<td>08:55:54</td>
<td>2016.1.00133.T</td>
<td>SPT0348-_a_06_7M</td>
<td>An ACA N+ survey of z=3-7 DSFGs from the South Pole Telescope survey</td>
<td>Chapman</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>07:54:29</td>
<td>09:11:47</td>
<td>2016.1.00308.S</td>
<td>N159-W_a_06_TM1</td>
<td>Searching for the first extragalactic hot molecular cores</td>
<td>Schilke</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>08:57:15</td>
<td>09:49:10</td>
<td>2016.1.00133.T</td>
<td>SPT0346-_a_06_7M</td>
<td>An ACA N+ survey of z=3-7 DSFGs from the South Pole Telescope survey</td>
<td>Chapman</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>09:12:08</td>
<td>10:27:16</td>
<td>2016.1.00308.S</td>
<td>N159-W_a_06_TM1</td>
<td>Searching for the first extragalactic hot molecular cores</td>
<td>Schilke</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>10:38:56</td>
<td>11:52:17</td>
<td>2016.1.00389.S</td>
<td>HH111MM_a_06_TM1</td>
<td>Characterizing the Envelope-Disk Transition in the Young Protostellar System HH 111</td>
<td>Lee</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>21:24:56</td>
<td>21:56:36</td>
<td>2016.1.00766.S</td>
<td>G0.38+0._a_03_TM2</td>
<td>Linking high-mass star formation and SiO maser emission -- the Galactic centre dust-ridge cloud G0.38+0.04</td>
<td>Walker</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>21:57:45</td>
<td>23:31:24</td>
<td>2016.1.01162.S</td>
<td>G357_a_03_TM1</td>
<td>Evolutionary sequence for the fragmentation of high line-mass filaments</td>
<td>Kainulainen</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>23:33:36</td>
<td>00:52:18</td>
<td>2016.1.01175.S</td>
<td>SPT-CL_2_a_04_7M</td>
<td>The most massive galaxy cluster above redshift 1: anatomy of a cool core</td>
<td>Burkutean</td>
<td>EU</td>
<td>7-m</td>
<td>4</td>
</tr>
<tr>
<td>23:56:10</td>
<td>00:46:08</td>
<td>2016.1.00859.S</td>
<td>Neptune_a_04_TM1</td>
<td>Opacity Variability in Neptune's Troposphere</td>
<td>Tollefson</td>
<td>NA</td>
<td>12-m</td>
<td>4</td>
</tr>
</tbody>
</table>

2016-10-08

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:59:56</td>
<td>02:15:17</td>
<td>2016.1.00620.S</td>
<td>W49N_a_06_TP</td>
<td>The Core Mass Function and its Evolution in an Extreme Protocluster</td>
<td>Ginsburg</td>
<td>EU</td>
<td>Total Power 6</td>
<td></td>
</tr>
<tr>
<td>01:06:24</td>
<td>02:29:06</td>
<td>2016.1.00057.S</td>
<td>ep_aqr_a_06_7M</td>
<td>Observing the inner wind of the Troposphere</td>
<td>Homan</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
</tbody>
</table>
circumstellar environment of EP Aqr.

01:09:23 02:12:16 2016.1.00057.S ep_aqr_a_06_TM1 Observing the inner wind of the circumstellar environment of EP Aqr. Homan EU 12-m 6

02:19:23 03:22:17 2016.1.00057.S ep_aqr_a_06_TM1 Observing the inner wind of the circumstellar environment of EP Aqr. Homan EU 12-m 6

02:42:08 03:36:35 2016.1.00133.T SPT2335-._a_07_7M An ACA N+ survey of z=3-7 DSFGs from the South Pole Telescope survey Chapman NA 7-m 6

05:14:31 06:31:22 2016.1.00505.S B1-bN_a_06_TM1 Probing the earliest stage of protostellar evolution using the CH3OH lines Hirano EA 12-m 6

06:32:07 07:40:19 2016.1.00389.S HH111MM_a_06_TM1 Characterizing the Envelope-Disk Transition in the Young Protostellar System HH 111 Lee NA 12-m 6

06:43:20 07:47:18 2016.1.00133.T SPT0345-._a_07_7M An ACA N+ survey of z=3-7 DSFGs from the South Pole Telescope survey Chapman NA 7-m 7

07:41:13 08:46:03 2016.1.00389.S HH111MM_a_06_TM1 Characterizing the Envelope-Disk Transition in the Young Protostellar System HH 111 Lee NA 12-m 6

07:48:01 08:58:38 2016.1.00133.T SPT0459-._a_06_7M An ACA N+ survey of z=3-7 DSFGs from the South Pole Telescope survey Chapman NA 7-m 6

07:55:35 09:04:30 2016.1.00203.S N206_a_06_TP Tracing evolution of giant molecular clouds in the Large Magellanic Cloud Kawamura EA Total Power 6

08:47:59 10:11:49 2016.1.01475.S HH212_a_07_TM1 Are Class 0 molecular jets really molecular? ALMA insight into the origin of protostellar jets Codella EU 12-m 7

08:59:43 10:31:25 2016.1.00193.S A439_a_03_7M The substructure of molecular clouds in the LMC Wong NA 7-m 3

10:43:10 11:43:53 2016.1.00652.S GX_Mon_a_06_7M Unveiling the enigmatic AGB star GX Mon Randall EU 7-m 6

11:08:27 11:33:33 2016.1.00980.S 2360_167_a_06_TM1 After the Fall: Zooming In on the Molecular Fuel in Post-Starburst Galaxies Smith NA 12-m 6

11:43:12 12:36:48 2016.1.00980.S 0480_580_a_06_TM1 After the Fall: Zooming In on the Molecular Fuel in Post-Starburst Galaxies Smith NA 12-m 6

23:03:21 00:05:53 2016.1.00057.S ep_aqr_a_06_TM1 Observing the inner wind of the circumstellar environment of EP Aqr. Homan EU 12-m 6

23:19:44 01:21:43 2016.1.00884.S hd163296_a_07_7M Hunting down the cold organic reservoir in protoplanetary disks Guzman NA 7-m 7

2016-10-09

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:08:26</td>
<td>01:14:41</td>
<td>2016.1.01201.S</td>
<td>Abell382_a_03_TM1</td>
<td>The nature of dark matter in galaxy collisions</td>
<td>Massey</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>01:52:09</td>
<td>03:24:51</td>
<td>2015.1.00274.S</td>
<td>NGC253_a_07_7M</td>
<td>A Close Look into the Blast Furnace: the Core of the NGC253 Starburst at One Parsec Resolution</td>
<td>Bolatto</td>
<td>NA</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>01:57:52</td>
<td>03:03:54</td>
<td>2016.1.01201.S</td>
<td>Abell382_a_03_TM1</td>
<td>The nature of dark matter in galaxy collisions</td>
<td>Massey</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>02:29:16</td>
<td>03:40:42</td>
<td>2016.1.00360.S</td>
<td>ngc_602_b_06_TP</td>
<td>SMC NGC 602: an exemplary test of low-metallicity star formation</td>
<td>Indebetouw</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
</tbody>
</table>
03:18:30 04:56:41 2015.A.00018.S SXDF-NB1_a_08_TE [OIII] line kinematics of a Lya emitter at z=7.2 Chapman NA 12-m 8
03:25:20 04:26:28 2016.1.00133.T SPT2340-a_07_7M An ACA N+ survey of z=3-7 DSFGs from the South Pole Telescope survey Indebetouw NA Total Power 6
04:26:56 06:21:51 2016.1.01435.S NGC_628_a_07_7M ALMA-LEGUS: Connecting Star Formation to its Fuel Dale NA 7-m 7
06:22:42 08:17:42 2016.1.01435.S NGC_628_a_07_7M ALMA-LEGUS: Connecting Star Formation to its Fuel Dale NA 7-m 7
06:50:51 08:27:45 2015.1.00341.S MMS1_a_06_TE Revealing Magnetic Field Structures: IM-mass Cores in OMC-3 Takahashi EA 12-m 6
08:18:36 09:12:07 2016.1.00133.T SPT0418-a_07_7M An ACA N+ survey of z=3-7 DSFGs from the South Pole Telescope survey Chapman NA 7-m 7
08:28:05 09:50:11 2015.1.00341.S MMS1_a_06_TE Revealing Magnetic Field Structures: IM-mass Cores in OMC-3 Takahashi EA 12-m 6
08:28:40 09:44:45 2016.1.00203.S N206D_a_06_TP Tracing evolution of giant molecular clouds in the Large Magellanic Cloud Kawamura EA Total Power 6
09:45:58 11:02:07 2016.1.00203.S N206D_a_06_TP Tracing evolution of giant molecular clouds in the Large Magellanic Cloud Kawamura EA Total Power 6
09:50:33 11:17:37 2015.1.00341.S MMS1_a_06_TE Revealing Magnetic Field Structures: IM-mass Cores in OMC-3 Takahashi EA 12-m 6
10:10:46 10:54:48 2016.1.00209.S CI_star_a_06_7M Multi-scale disk and envelope kinematics around the most extremely accreting young stars Takami EA 7-m 6
11:16:29 12:30:33 2016.1.00203.S LMC_N166_a_06_TP Tracing evolution of giant molecular clouds in the Large Magellanic Cloud Kawamura EA Total Power 6
11:33:07 12:04:37 2016.1.00209.S V899_Mon_a_06_7M Multi-scale disk and envelope kinematics around the most extremely accreting young stars Takami EA 7-m 6
21:33:12 23:05:38 2016.1.01162.S G357_a_03_TM1 Evolutionary sequence for the fragmentation of high line-mass filaments Kainulainen EU 12-m 3
23:34:48 00:40:51 2016.1.01201.S Abell382_a_03_TM1 The nature of dark matter in galaxy collisions Massey EU 12-m 3
23:36:11 00:59:52 2016.1.01162.S G357_a_03_7M Evolutionary sequence for the fragmentation of high line-mass filaments Kainulainen EU 7-m 3

2016-10-10
Start (UT) End (UT) Project Code SchedBlock Project Title PI Executive Array Band
01:48:38 02:54:55 2016.1.01201.S Abell382_a_03_TM1 The nature of dark matter in galaxy collisions Massey EU 12-m 3
01:52:29 02:57:38 2016.1.00026.S EP_Aqr_a_06_7M Mapping the wind structure and kinematics of the AGB star EP Aqr Le Berte EEU 7-m 6
02:56:58 04:03:02 2016.1.01201.S Abell382_a_03_TM1 The nature of dark matter in galaxy collisions Massey EU 12-m 3
03:00:37 03:59:53 2016.1.00133.T SPT0020-a_07_7M An ACA N+ survey of z=3-7 DSFGs from the South Pole Chapman NA 7-m 7

from the South Pole Telescope
An ACA N+ survey of z=3-7 DSFGs

The nature of dark matter in galaxy collisions

Galaxy GMC evolution.

Low-metallicity star formation and SMC NGC 602: an exemplary test of

kinematics of the AGB star EP Aqr

Mapping the wind structure and kinematics of the AGB star EP Aqr

collisions

collisions
Telescope survey

SMC NGC 602: an exemplary test of low-metallicity star formation and GMC evolution. Indebetouw NA Total Power 6

ALMA-LEGUS: Connecting Star Formation to its Fuel Dale NA 7-m 7

Deep CO Mapping of NGC 55: Extra-Zschaechner planar Molecular Gas in Spiral Galaxies EU Total Power 3

HD as a powerful tool to trace gas flows in primordial galaxies Maiolino EU 12-m 7

Deep CO Mapping of NGC 55: Extra-Zschaechner planar Molecular Gas in Spiral Galaxies EU Total Power 3

First Mapping of the B-fields in the Protostellar Jets Near the Launching Point Lee EA 12-m 7

An ACA N+ survey of z=3-7 DSFGs from the South Pole Telescope survey Chapman NA 7-m 6

Tracing evolution of giant molecular clouds in the Large Magellanic Cloud Kawamura EA Total Power 6

First Mapping of the B-fields in the Protostellar Jets Near the Launching Point Lee EA 12-m 7

Feeding the protoplanetary disk: resolving the 1000 au kinematics Harsono EU 7-m 3

Tracing evolution of giant molecular clouds in the Large Magellanic Cloud Kawamura EA Total Power 6

An ACA N+ survey of z=3-7 DSFGs from the South Pole Telescope survey Chapman NA 7-m 6

Tracing evolution of giant molecular clouds in the Large Magellanic Cloud Kawamura EA Total Power 6

Zooming in on the AGN-driven star formation in distant, powerful, radio-loud AGN Podigachoski EU 12-m 7

The substructure of molecular clouds in the LMC Wong NA 7-m 3

Complete Census of Bright Lensed Submillimeter Galaxies Discovered by the Herschel Lensing Survey Egami NA 12-m 6

Tracing evolution of giant molecular clouds in the Large Magellanic Cloud Kawamura EA Total Power 6

Compaction in Obscured AGN Hosts Chang EU 12-m 7

Multi-scale disk and envelope kinematics around the most extremely accreting young stars Takami EA 7-m 6