<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>23:43:55</td>
<td>00:56:11</td>
<td>2016.1.00856.S</td>
<td>BDF-3299_a_06_TM1</td>
<td>The complex interplay between gas accretion and stellar feedbacks in primordial galaxies</td>
<td>Carniani</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:00:59</td>
<td>02:13:34</td>
<td>2016.1.00856.S</td>
<td>BDF-3299_a_06_TM1</td>
<td>The complex interplay between gas accretion and stellar feedbacks in primordial galaxies</td>
<td>Carniani</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:16:59</td>
<td>03:10:04</td>
<td>2016.1.01262.S</td>
<td>ID134238_a_06_TM1</td>
<td>Caught in the act: ALMA witnesses galaxy transformation</td>
<td>Rowlands</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>03:21:00</td>
<td>04:31:33</td>
<td>2016.1.01501.S</td>
<td>Perseus_c_06_TM1</td>
<td>Unbiased Chemical Survey of Protostellar Sources in Perseus</td>
<td>Sakai</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>04:54:22</td>
<td>05:16:35</td>
<td>2016.1.00683.S</td>
<td>NGC1684_a_06_TM2</td>
<td>Black hole mass measurements in the Ma most MASSIVE Galaxies</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>04:58:31</td>
<td>06:24:03</td>
<td>2016.1.01533.S</td>
<td>30_Dorad_a_06_7M</td>
<td>Spatially Extended Continuum and Line Emission for the 30 Doradus Star Forming Region</td>
<td>Brunetti</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>05:21:59</td>
<td>05:46:46</td>
<td>2016.1.00683.S</td>
<td>NGC1453_a_06_TM2</td>
<td>Black hole mass measurements in the Ma most MASSIVE Galaxies</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>05:47:28</td>
<td>06:14:02</td>
<td>2016.1.00839.S</td>
<td>NGC_1300_a_06_TM2</td>
<td>WISDOM: supermassive black hole mass measurements for nearby spiral galaxies using molecular gas</td>
<td>Onishi</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>06:14:45</td>
<td>07:12:32</td>
<td>2016.1.01144.S</td>
<td>MonR2_a_03_TM1</td>
<td>Infall and outflow in a filamentary hub Treviño-Morales</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>06:24:31</td>
<td>07:41:19</td>
<td>2016.1.00902.S</td>
<td>B35-East_b_06_7M</td>
<td>Formation of VLM stars and BD in Lambda Orionis Star Forming Region (LOSFR) II. Aca view of Barnard 35</td>
<td>Bayo</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>07:41:46</td>
<td>09:03:50</td>
<td>2016.1.00902.S</td>
<td>B35-West_b_06_7M</td>
<td>Formation of VLM stars and BD in Lambda Orionis Star Forming Region (LOSFR) II. Aca view of Barnard 35</td>
<td>Bayo</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>08:30:12</td>
<td>09:01:50</td>
<td>2015.1.00412.S</td>
<td>nqC_3256_h_06_TE</td>
<td>Chemistry in the Brightest Luminous-Infrared Merger</td>
<td>Harada</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>09:02:56</td>
<td>10:03:06</td>
<td>2016.1.01155.S</td>
<td>cosclust_a_03_TM2</td>
<td>Resolved star formation and molecular gas distribution in the most distant cluster at z=2.506</td>
<td>Wang</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>09:17:38</td>
<td>10:40:16</td>
<td>2016.1.01346.S</td>
<td>AGAL300_a_06_7M</td>
<td>Galactic Census of All Massive Starless Cores within 5 kpc</td>
<td>Pillai</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>10:17:39</td>
<td>11:39:25</td>
<td>2016.1.00171.S</td>
<td>25015_a_03_TM1</td>
<td>Understanding ISM physics at high-z: Daddi cold gas and CO excitation for 75 normal and starburst galaxies at 1.1<z<1.7</td>
<td>Harada</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>11:30:25</td>
<td>13:01:37</td>
<td>2016.1.00164.S</td>
<td>M83_c_06_7M</td>
<td>Chemical Diagnostics of Extragalactic Harada ISM: Shock-Induced Evolution in M83 Nucleus</td>
<td>Harada</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>11:40:00</td>
<td>13:07:41</td>
<td>2016.1.00171.S</td>
<td>25452_a_03_TM1</td>
<td>Understanding ISM physics at high-z: Daddi cold gas and CO excitation for 75 normal and starburst galaxies at 1.1<z<1.7</td>
<td>Harada</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>15:11:42</td>
<td>16:36:59</td>
<td>2016.1.00035.S</td>
<td>H-MM1_a_03_7M</td>
<td>Nuclear spin ratios as clues to the origin of deuterated ammonia</td>
<td>Harju</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
</tbody>
</table>
16:28:21 17:36:45 2016.1.00264.T H_1743-3_a_03_TM1 Revealing the magnetic structure of compact jets in Galactic black hole X-ray binaries
16:41:05 17:49:53 2016.1.01013.S Stone_CI_a_06_TP Testing a New Mode for Cloud Collapse in Galaxy Centers
16:48:59 18:17:49 2016.1.00577.S G333.6-0_a_06_7M Mapping a binary O-star system in formation. The Milky Way monster GAL333.6-0.2
17:37:40 18:25:33 2016.1.00264.T H_1743-3_a_03_TM1 Revealing the magnetic structure of compact jets in Galactic black hole X-ray binaries
18:26:18 19:12:23 2016.1.00264.T H_1743-3_a_03_TM1 Revealing the magnetic structure of compact jets in Galactic black hole X-ray binaries
20:39:32 21:40:19 2016.1.00496.S Cyg_X-1_a_03_TM1 Searching for maser emission in X-ray stars
21:12:46 22:36:43 2016.1.00641.S 10199 Ch_a_06_TP Search for gas emission from Centaur Leiva Chariklo
22:09:42 23:32:03 2016.1.00856.S BDF-3299_a_06_TM1 The complex interplay between gas accretion and stellar feedbacks in primordial galaxies
22:42:10 23:45:15 2016.1.00641.S 10199 Ch_a_06_TP Search for gas emission from Centaur Leiva Chariklo
23:57:37 01:10:46 2016.1.00856.S BDF-3299_a_06_TM1 The complex interplay between gas accretion and stellar feedbacks in primordial galaxies

2016-11-30

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:32:12</td>
<td>02:25:07</td>
<td>ID134238_a_06_TM1</td>
<td>Early Stages of Dense Core Evolution</td>
<td>Caught in the act: ALMA witnesses galaxy transformation</td>
<td>Rowlands</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:25:46</td>
<td>03:36:48</td>
<td>Perseus_c_06_TM1</td>
<td>Perseus c_06_TM1</td>
<td>Unbiased Chemical Survey of Protostellar Sources in Perseus</td>
<td>Sakai</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:51:44</td>
<td>03:55:44</td>
<td>30_Dorad_a_03_7M</td>
<td>30 Doradus a_03_7M</td>
<td>Spatially Extended Continuum and Line Emission for the 30 Doradus Star Forming Region</td>
<td>Brunetti</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>03:56:32</td>
<td>05:43:38</td>
<td>MC5_a_06_7M</td>
<td>30 Doradus a_03_7M</td>
<td>Spatially Extended Continuum and Line Emission for the 30 Doradus Star Forming Region</td>
<td>Tachihara</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>04:59:46</td>
<td>06:00:57</td>
<td>ID84499_a_06_TM1</td>
<td>ID84499 a_06_TM1</td>
<td>Caught in the act: ALMA witnesses galaxy transformation</td>
<td>Rowlands</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>04:59:46</td>
<td>06:00:57</td>
<td>ST2_a_06_TM1</td>
<td>ST2 a_06_TM1</td>
<td>Unveiling chemical compositions of high-mass star-forming cores in low metallicity galaxies</td>
<td>Shimonishi</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>05:56:05</td>
<td>07:31:37</td>
<td>N206_a_06_7M</td>
<td>25452 a_03_TM1</td>
<td>Understanding ISM physics at high-z: Daddi cold gas and CO excitation for 75 normal and starburst galaxies at 1.1<z<1.7</td>
<td>Kawamura</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>06:01:48</td>
<td>07:03:03</td>
<td>ST2_a_06_TM1</td>
<td>ST2 a_06_TM1</td>
<td>Unveiling chemical compositions of high-mass star-forming cores in low metallicity galaxies</td>
<td>Shimonishi</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>07:15:48</td>
<td>08:45:24</td>
<td>25452 a_03_TM1</td>
<td>25452 a_03_TM1</td>
<td>Understanding ISM physics at high-z: Daddi cold gas and CO excitation for 75 normal and starburst galaxies at 1.1<z<1.7</td>
<td>Daddi</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>07:43:39</td>
<td>09:03:03</td>
<td>OMC2-FIR_a_04_7M</td>
<td>OMC2-FIR a_04_7M</td>
<td>Are hydrogen and nitrogen isotope fractionations related in Sun-like protoclusters?</td>
<td>Fontani</td>
<td>EU</td>
<td>7-m</td>
<td>4</td>
</tr>
<tr>
<td>08:46:03</td>
<td>10:07:19</td>
<td>25452 a_03_TM1</td>
<td>25452 a_03_TM1</td>
<td>Understanding ISM physics at high-z: Daddi cold gas and CO excitation for 75 normal and starburst galaxies at 1.1<z<1.7</td>
<td>Daddi</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>09:03:50</td>
<td>10:36:14</td>
<td>MonR2_c_03_7M</td>
<td>MonR2 c_03_7M</td>
<td>Infall and outflow in a filamentary hub</td>
<td>Treviño-Morales</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>10:09:00</td>
<td>11:40:39</td>
<td>30122 a_03_TM1</td>
<td>30122 a_03_TM1</td>
<td>Understanding ISM physics at high-z: Daddi cold gas and CO excitation for 75 normal and starburst galaxies at 1.1<z<1.7</td>
<td>Daddi</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>12:02:30</td>
<td>13:29:28</td>
<td>30122 a_03_TM1</td>
<td>30122 a_03_TM1</td>
<td>Understanding ISM physics at high-z: Daddi cold gas and CO excitation for 75 normal and starburst galaxies at 1.1<z<1.7</td>
<td>Daddi</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>12:05:59</td>
<td>13:17:47</td>
<td>MB3_f_06_TP</td>
<td>MB3 f_06_TP</td>
<td>Molecular Clouds and Star Formation: Sakamoto Across MB3</td>
<td>Sakamoto</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>14:08:29</td>
<td>15:09:07</td>
<td>IRAS_162_a_03_TM1</td>
<td>IRAS_162 a_03_TM1</td>
<td>The nitrogen isotopic ratio in interstellar ices</td>
<td>Magalhães</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
</tbody>
</table>
2016-12-01

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:29:05</td>
<td>02:45:22</td>
<td>2016.1.00627.S</td>
<td>DM_Tau_a_06_TM1</td>
<td>Chemical evolution during the disk life Oberg cycle</td>
<td>Oberg</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:45:59</td>
<td>03:56:48</td>
<td>2016.1.00627.S</td>
<td>DM_Tau_a_06_TM1</td>
<td>Chemical evolution during the disk life Oberg cycle</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>03:57:23</td>
<td>05:06:42</td>
<td>2016.1.00627.S</td>
<td>DO_Tau_a_06_TM1</td>
<td>Chemical evolution during the disk life Oberg cycle</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>05:07:14</td>
<td>05:56:51</td>
<td>2016.1.00627.S</td>
<td>MWC480_a_06_TM1</td>
<td>Chemical evolution during the disk life Oberg cycle</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>06:11:34</td>
<td>06:38:56</td>
<td>2016.1.00798.S</td>
<td>C-C-166_a_03_TM1</td>
<td>SUPER-ALMA: gas fractions and depletion timescales in AGN hosts at z~2</td>
<td>Mainieri</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>06:40:48</td>
<td>08:05:17</td>
<td>2016.1.00171.S</td>
<td>30122_a_03_TM1</td>
<td>Understanding ISM physics at high-z: Daddi cold gas and CO excitation for 75 normal and starburst galaxies at 1.1<z<1.7</td>
<td>Daddi</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>07:37:09</td>
<td>08:59:02</td>
<td>2016.1.00902.S</td>
<td>B35-West_b_06_7M</td>
<td>Formation of VLM stars and BD in Lambda Orionis Star Forming Region (LOSFR) II. ACA view of Barnard 35</td>
<td>Bayo</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>08:06:02</td>
<td>08:46:41</td>
<td>2016.1.00798.S</td>
<td>C-X-5575_a_03_TM1</td>
<td>SUPER-ALMA: gas fractions and depletion timescales in AGN hosts at z~2</td>
<td>Mainieri</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>08:47:25</td>
<td>09:11:34</td>
<td>2016.1.00798.S</td>
<td>C-C-337_a_03_TM1</td>
<td>SUPER-ALMA: gas fractions and depletion timescales in AGN hosts at z~2</td>
<td>Mainieri</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>09:12:19</td>
<td>09:36:42</td>
<td>2016.1.00798.S</td>
<td>C-C-346_a_03_TM1</td>
<td>SUPER-ALMA: gas fractions and depletion timescales in AGN hosts at z~2</td>
<td>Mainieri</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>09:37:28</td>
<td>10:01:17</td>
<td>2016.1.00798.S</td>
<td>C-C-2682_a_03_TM1</td>
<td>SUPER-ALMA: gas fractions and depletion timescales in AGN hosts at z~2</td>
<td>Mainieri</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>10:01:56</td>
<td>10:27:22</td>
<td>2016.1.00798.S</td>
<td>C-C-1253_a_03_TM1</td>
<td>SUPER-ALMA: gas fractions and depletion timescales in AGN hosts at z~2</td>
<td>Mainieri</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>10:38:35</td>
<td>11:18:09</td>
<td>2016.1.00798.S</td>
<td>C-X-5324_a_03_TM1</td>
<td>SUPER-ALMA: gas fractions and depletion timescales in AGN hosts at z~2</td>
<td>Mainieri</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>11:26:12</td>
<td>12:17:16</td>
<td>2016.1.01279.S</td>
<td>NGC4945_a_06_TM1</td>
<td>MAGNUM FEAR: Magnum Follow-up Carniani Exploiting ALMA Resolution.</td>
<td>Carniani</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>14:00:42</td>
<td>15:07:21</td>
<td>2016.1.00386.S</td>
<td>M83_b_06_TP</td>
<td>Molecular Clouds and Star Formation: Sakamoto Across M83</td>
<td>Sakamoto</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>15:12:07</td>
<td>16:09:38</td>
<td>2016.1.01468.S</td>
<td>IRAS_162_a_03_TM1</td>
<td>The nitrogen isotopic ratio in interstellar ices</td>
<td>Magalhães</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>15:26:43</td>
<td>16:55:42</td>
<td>2016.1.01489.T</td>
<td>Venus_b_06_TP</td>
<td>Study of a bow-type structure of Venus atmosphere discovered by the Venus Climate Orbiter, AKATS...</td>
<td>Maezawa</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>16:32:25</td>
<td>17:38:39</td>
<td>2016.1.01468.S</td>
<td>VLA_1623_a_03_TM1</td>
<td>The nitrogen isotopic ratio in interstellar ices</td>
<td>Magalhães</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>17:06:09</td>
<td>18:34:37</td>
<td>2016.1.01489.T</td>
<td>Venus_b_06_TP</td>
<td>Study of a bow-type structure of Venus atmosphere discovered by the Venus Climate Orbiter, AKATS...</td>
<td>Maezawa</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>17:33:26</td>
<td>18:26:03</td>
<td>2016.1.01489.T</td>
<td>Venus_b_06_7M</td>
<td>Study of a bow-type structure of Venus atmosphere discovered by the Venus Climate Orbiter, AKATS...</td>
<td>Maezawa</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
</tr>
</tbody>
</table>
18:36:21 19:02:36 2016.1.01489.T Venus_b_06_TM1 Study of a bow-type structure of Venus atmosphere discovered by the Venus Climate Orbiter, AKATSUKI Maezawa EA 12-m 6
19:03:06 19:56:48 2016.1.00884.S hd163296_a_06_TM1 Hunting down the cold organic reservoir in protoplanetary disks Guzman NA 12-m 6
20:20:37 21:20:28 2016.1.00817.S LSR_J183_a_03_TM1 Hot on the Trail of Millimeter Emission Williams from the Coolest Stars NA 12-m 3
23:45:57 00:39:16 2016.1.01489.T Venus_b_07_TP Study of a bow-type structure of Venus atmosphere discovered by the Venus Climate Orbiter, AKATSUKI Maezawa EA Total Power 7

2016-12-02
Start (UT) End (UT) Project Code SchedBlock Project Title PI Executive Array Band
00:06:34 01:19:27 2016.1.00856.S BDF-3299_a_06_TM1 The complex interplay between gas accretion and stellar feedbacks in protimordial galaxies Carniani EU 12-m 6
01:38:54 02:36:42 2016.1.00967.S ZFOURGE_c_03_TM1 The CO Excitation of Milky Way Progenitors at z=1.2-1.3 Papovich NA 12-m 3
02:38:17 03:53:07 2016.1.00324.L UDF_mosa_c_03_TM1 ASPECS: The ALMA SPECtral line Survey in the UDF - An ALMA Large Program Walter EU 12-m 3
02:47:54 04:16:41 2016.1.01123.S L1641N_a_03_7M Formation and early evolution of embedded proto-clusters Hacar EU 7-m 3
04:05:30 05:20:18 2016.1.00324.L UDF_mosa_a_03_TM1 ASPECS: The ALMA SPECtral line Survey in the UDF - An ALMA Large Program Walter EU 12-m 3
04:17:10 05:28:58 2016.1.01123.S OMC4-Sou_b_03_7M Formation and early evolution of embedded proto-clusters Hacar EU 7-m 3
05:21:07 06:31:09 2016.1.00627.S DO_Tau_a_06_TM1 Chemical evolution during the disk life Obergh NA 12-m 6
05:29:44 07:02:11 2016.1.01144.S MonR2_c_03_7M Infall and outflow in a filamentary hub Treviño-Morales EU 7-m 3
06:42:31 07:41:03 2016.1.01423.S J0859+00_a_06_TM1 Probing the star forming nature and co-evolutionary relations of low-luminosity quasars at z~6 Izumi EA 12-m 6
07:02:41 08:37:40 2016.1.01123.S L1641S2_a_03_7M Formation and early evolution of embedded proto-clusters Hacar EU 7-m 3
07:42:53 08:37:53 2016.1.01423.S J0859+00_a_06_TM1 Probing the star forming nature and co-evolutionary relations of low-luminosity quasars at z~6 Izumi EA 12-m 6
08:38:24 09:58:19 2016.1.01123.S L1641S1_b_03_7M Formation and early evolution of embedded proto-clusters Hacar EU 7-m 3
08:38:26 09:20:26 2016.1.01184.S s6_d_06_TM1 Accurate gas-to-dust ratios with [CI] atBourne z~1 NA 12-m 6
09:25:26 11:06:41 2016.1.00440.L TW_Hya_a_07_TM1 A Model Independent Study of Turbulence and Temperature in TW Hya Teague EU 12-m 7
10:14:01 11:52:11 2016.1.00386.S M83_f_06_7M Molecular Clouds and Star Formation: Sakamoto Across M83 EA 7-m 6
11:18:31 11:51:57 2016.1.01423.S J1152+00_a_06_TM1 Probing the star forming nature Izumi EA 12-m 6
<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>02:00:01</td>
<td>02:10:05</td>
<td>2016.1.01037.S</td>
<td>Taffy_co_a_06_TM2</td>
<td>After the Storm: Mapping the Highly Disturbed Molecular Gas in the Taffy Galaxies and Bridge</td>
<td>Appleton</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:29:12</td>
<td>02:47:38</td>
<td>2016.1.00627.S</td>
<td>DO_Tau_a_06_TM1</td>
<td>Chemical evolution during the disk life</td>
<td>Oberg</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:40:10</td>
<td>03:27:38</td>
<td>2016.1.00782.S</td>
<td>N159S_a_06_7M</td>
<td>What hinders massive star formation in a massive quiescent giant molecular cloud at low metallicity</td>
<td>Chen</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>02:58:35</td>
<td>03:51:17</td>
<td>2016.1.01554.S</td>
<td>SPT0532-a_06_TM1</td>
<td>Resolving Water Emission in the EarlyNuniverse</td>
<td>Perley</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>04:30:18</td>
<td>05:30:00</td>
<td>2016.1.00768.S</td>
<td>GRB05091-a_07_TM1</td>
<td>Luminous, Dust-Enshrouded High-z Galaxies Selected by Gamma-Ray Bursts</td>
<td>Perley</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>04:44:12</td>
<td>06:48:09</td>
<td>2015.1.00393.S</td>
<td>Target_a_1_08_7M</td>
<td>CI observations toward compact molecular clouds associated with isolated intermediate- and high-mass YSOs in the LMC</td>
<td>Harada</td>
<td>EU</td>
<td>7-m</td>
<td>8</td>
</tr>
<tr>
<td>05:31:26</td>
<td>06:07:43</td>
<td>2016.1.00240.S</td>
<td>L1544_b_07_TM1</td>
<td>On the brink of star formation</td>
<td>Caselli</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>06:14:24</td>
<td>07:08:30</td>
<td>2016.1.00089.S</td>
<td>SPT0441-a_08_TM1</td>
<td>Shut It Down: Probing Molecular Feedback in z=4-5 Dusty, Star-forming Galaxies</td>
<td>Spilker</td>
<td>NA</td>
<td>12-m</td>
<td>8</td>
</tr>
<tr>
<td>06:49:10</td>
<td>08:53:30</td>
<td>2015.1.00393.S</td>
<td>Target_a_1_08_7M</td>
<td>CI observations toward compact molecular clouds associated with isolated intermediate- and high-mass YSOs in the LMC</td>
<td>Harada</td>
<td>EU</td>
<td>7-m</td>
<td>8</td>
</tr>
<tr>
<td>07:11:13</td>
<td>08:35:03</td>
<td>2016.1.01604.S</td>
<td>659927_a_07_TM1</td>
<td>A spatially resolved Kennicutt-Schmidt relation for a mass-complete sample of star-forming galaxies at z~1.5</td>
<td>Magnelli</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>08:36:01</td>
<td>10:04:46</td>
<td>2016.1.00464.S</td>
<td>TW_Hya_a_07_TM1</td>
<td>Determining the chemical origin of gas-phase methanol in the TW Hya protoplanetary disk</td>
<td>Walsh</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>09:19:26</td>
<td>11:02:55</td>
<td>2016.1.00291.S</td>
<td>BHR71-Si_a_07_7M</td>
<td>The jet/outflow system in BHR71</td>
<td>Gusdorf</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>10:02:17</td>
<td>11:08:52</td>
<td>2016.1.00386.S</td>
<td>M83_b_06_TP</td>
<td>Molecular Clouds and Star Formation: Sakamoto Across M83</td>
<td>Oberg</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>13:11:37</td>
<td>14:10:19</td>
<td>2015.1.00927.S</td>
<td>GRB06081_a_07_TE</td>
<td>Luminous, Dust-Enshrouded High-z Galaxies Selected by Gamma-Ray Bursts</td>
<td>Perley</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>14:25:52</td>
<td>15:34:20</td>
<td>2016.1.01013.S</td>
<td>Stone_CI_a_06_TP</td>
<td>Testing a New Mode for Cloud Collapse in Galaxy Centers</td>
<td>Battersby</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>22:46:22</td>
<td>00:50:40</td>
<td>2016.1.00907.S</td>
<td>hr_8799_a_07_7M</td>
<td>Planet-disk interactions in the HR 8799 system</td>
<td>Faramaz</td>
<td>CL</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>23:23:27</td>
<td>00:35:12</td>
<td>2016.1.01423.S</td>
<td>J2216-00_a_06_TM1</td>
<td>Probing the star forming nature and co-evolutionary relations of low-luminosity quasars at z~6</td>
<td>Izumi</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
</tbody>
</table>
05:43:28 07:01:24 2016.1.00203.S N206D_a_06_7M Tracing evolution of giant molecular clouds in the Large Magellanic Cloud Kawamura EA 7-m 6
07:13:15 08:48:03 2016.1.00782.S N159S_a_06_7M What hinders massive star formation in a massive quiescent giant molecular cloud at low metallicity Chen EU 7-m 6
08:05:28 09:00:25 2016.1.01423.S J0859+00_a_06_TM1 Probing the star forming nature and co-evolutionary relations of low-luminosity quasars at z >~ 6 Izumi EA 12-m 6
08:49:48 10:48:11 2016.1.00291.S BHR71-Si_a_07_7M The jet/outflow system in BHR71 Gusdorf EU 7-m 7
09:03:13 09:44:54 2016.1.01184.S s6_c_06_TM1 Accurate gas-to-dust ratios with [CI] at Bourne z~1 EU 12-m 6
09:47:19 10:08:39 2016.1.00592.S TW_Hya_a_03_TM2 The First Constraints on the Volatile Nitrogen Abundance in TW Hya Schwarz NA 12-m 3
10:10:00 10:29:20 2016.1.01481.S 4C--02.5_a_06_TM2 Measuring the Spectral Evolution, Structure, and Speed of Extragalactic Jets with ALMA Meyer NA 12-m 6
10:42:13 11:49:45 2016.1.01250.S Q1130-14_a_03_TM1 Toward the Baryon Census of a z=0.31 Galaxy Group and Diffuse Gas Structure Peroux EU 12-m 3
11:00:13 12:03:14 2016.1.00909.S IRDC316_a_06_7M Captured in Action: the Evolution of Core Mass Function from Prestellar to UCHII Stages in a Linear Filament Wang EU 7-m 6
20:05:31 21:50:30 2016.1.00641.S 10199 Ch_a_06_7M Search for gas emission from Centaur Leiva Charinko CL EU NA 7-m 6
23:16:41 00:56:34 2016.1.00324.L UDF_mosa_d_03_TM1 ASPECS: The ALMA SPECtral line Survey in the UDF - An ALMA Large Program Walter CL EU NA 12-m 3

2016-12-05

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:57:01</td>
<td>02:11:08</td>
<td>2016.1.00324.L</td>
<td>UDF_mosa_e_03_TM1</td>
<td>ASPECS: The ALMA SPECtral line Survey in the UDF - An ALMA Large Program</td>
<td>Walter</td>
<td>CL EU NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>04:12:14</td>
<td>04:34:43</td>
<td>2016.1.00771.S</td>
<td>2MASS_J0_a_06_TM2</td>
<td>The ALMA edge: Probing the Gas Structure in Edge-on T Tauri Disks</td>
<td>Duchene</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>06:27:48</td>
<td>07:00:55</td>
<td>2016.1.00652.S</td>
<td>GX_Mon_a_06_TM2</td>
<td>Unveiling the enigmatic AGB star GX Randall Mon</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>06:30:47</td>
<td>07:21:06</td>
<td>2016.1.01123.S</td>
<td>L1641b_03_7M</td>
<td>Formation and early evolution of embedded proto-clusters</td>
<td>Hacar</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>07:58:33</td>
<td>08:26:48</td>
<td>2016.1.00329.S</td>
<td>12J09023_a_03_TM1</td>
<td>Testing the cold ISM removal mechanism in passive galaxies</td>
<td>Michaowski</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>08:03:04</td>
<td>09:35:41</td>
<td>2016.1.01144.S</td>
<td>MonR2_c_03_7M</td>
<td>Infall and outflow in a filamentary hub Treviño-Morales</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>08:29:14</td>
<td>09:23:56</td>
<td>2016.1.01184.S</td>
<td>s6_a_06_TM1</td>
<td>Accurate gas-to-dust ratios with [CI] at Bourne z~1</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>09:24:13</td>
<td>10:51:50</td>
<td>2016.1.00464.S</td>
<td>TW_Hya_a_07_TM1</td>
<td>Determining the chemical origin of gas-phase methanol in the TW Hya protoplanetary disk</td>
<td>Walsh</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>11:03:25</td>
<td>11:46:41</td>
<td>2016.1.01347.S</td>
<td>AGAL301_a_06_TM2</td>
<td>Extremely high velocity jets from massive YSOs</td>
<td>Leurini</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
</tbody>
</table>