ALMA Observing Activity from 2017-03-19T17:59:00 to 2017-03-26T18:00:00 QA0 pass executions

2017-03-19

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>22:33:08</td>
<td>23:47:27</td>
<td>2016.1.01398.S</td>
<td>H0542077_a_03_TM1</td>
<td>The role of the environment in shaping the CMF in the L1641 Molecular Clouds</td>
<td>Polychroni</td>
<td>CL</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>23:59:12</td>
<td>01:13:58</td>
<td>2016.1.00309.S</td>
<td>HE0515-4_a_04_TM1</td>
<td>Direct detection of a quasar hyperwind through the Sunyaev-Zeldovich Effect</td>
<td>Lacy</td>
<td>NA</td>
<td>12-m</td>
<td>4</td>
</tr>
</tbody>
</table>

2017-03-20

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>02:33:22</td>
<td>04:09:48</td>
<td>2016.1.01040.S</td>
<td>146897_a_06_TM1</td>
<td>A [CI] survey of high-redshift main-sequence galaxies</td>
<td>Valentino</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>05:05:17</td>
<td>07:05:23</td>
<td>2016.1.00753.S</td>
<td>G331.639_a_03_7M</td>
<td>Explaining the puzzling SiO emission toward G331.639+0.051: a high-mass starless cluster-forming clump</td>
<td>Contreras</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>06:37:37</td>
<td>07:06:25</td>
<td>2016.1.01346.S</td>
<td>AGAL313_a_06_TM1</td>
<td>Galactic Census of All Massive Starless Cores within 5 kpc</td>
<td>Pillai</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>07:07:12</td>
<td>09:07:27</td>
<td>2016.1.00753.S</td>
<td>G331.639_a_03_7M</td>
<td>Explaining the puzzling SiO emission toward G331.639+0.051: a high-mass starless cluster-forming clump</td>
<td>Contreras</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>07:10:34</td>
<td>08:08:32</td>
<td>2016.1.01599.S</td>
<td>Oph_B-11_a_06_TM1</td>
<td>Nature and origin of the candidate pre-brown dwarf core OphB-11</td>
<td>André</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>08:12:24</td>
<td>09:51:05</td>
<td>2016.1.00985.S</td>
<td>G0253m1_a_06_TM1</td>
<td>Dense Core Magnetic Fields in High-Mass Infrared Dark Clouds</td>
<td>Pillai</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>08:17:42</td>
<td>09:25:48</td>
<td>2016.1.01013.S</td>
<td>S1one_C1_a_06_TP</td>
<td>Testing a New Mode for Cloud Collapse in Galaxy Centers</td>
<td>Battersby</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>09:37:59</td>
<td>11:01:10</td>
<td>2016.1.00641.S</td>
<td>10199_Ch_a_06_TP</td>
<td>Search for gas emission from Centaur</td>
<td>Leiva Chariko</td>
<td>CL</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>09:51:47</td>
<td>11:09:57</td>
<td>2016.1.00985.S</td>
<td>G0253m1_a_06_TM1</td>
<td>Dense Core Magnetic Fields in High-Mass Infrared Dark Clouds</td>
<td>Pillai</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>10:57:20</td>
<td>11:55:50</td>
<td>2016.1.01115.S</td>
<td>G10.3-0_a_06_7M</td>
<td>Fragmentation and chemical evolution in high mass star formation</td>
<td>Wang</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>11:10:53</td>
<td>11:34:29</td>
<td>2016.1.00915.S</td>
<td>G35.2Na_a_06_TM1</td>
<td>An anatomy of massive, cold, and highly deuterated cores next to warm/hot cores</td>
<td>Zhang</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>11:12:40</td>
<td>11:54:18</td>
<td>2016.1.00209.S</td>
<td>CO_Ser_a_06_TP</td>
<td>Multi-scale disk and envelope kinematics around the most extremely accreting young stars</td>
<td>Takami</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>21:19:26</td>
<td>22:34:19</td>
<td>2016.1.00309.S</td>
<td>HE0515-4_a_04_TM1</td>
<td>Direct detection of a quasar hyperwind through the Sunyaev-Zeldovich Effect</td>
<td>Lacy</td>
<td>NA</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>22:35:31</td>
<td>23:49:56</td>
<td>2016.1.00309.S</td>
<td>HE0515-4_a_04_TM1</td>
<td>Direct detection of a quasar hyperwind through the Sunyaev-Zeldovich Effect</td>
<td>Lacy</td>
<td>NA</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>23:48:02</td>
<td>01:07:13</td>
<td>2016.1.01123.S</td>
<td>L1641S1_b_03_7M</td>
<td>Formation and early evolution of embedded proto-clusters</td>
<td>Hacar</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
</tbody>
</table>

2017-03-21

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:08:22</td>
<td>01:22:30</td>
<td>2016.1.00309.S</td>
<td>HE0515-4_a_04_TM1</td>
<td>Direct detection of a quasar hyperwind through the Sunyaev-Zeldovich Effect</td>
<td>Lacy</td>
<td>NA</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>01:41:15</td>
<td>03:16:40</td>
<td>2016.1.01040.S</td>
<td>146897_a_06_TM1</td>
<td>A [CI] survey of high-redshift main-sequence galaxies</td>
<td>Valentino</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>05:17:59</td>
<td>06:52:00</td>
<td>2016.1.01125.S</td>
<td>F1C_a_03_7M</td>
<td>Cluster formation within filamentary molecular clouds</td>
<td>Contreras</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
</tbody>
</table>
Cluster formation within filamentary molecular clouds
Probing the magnetic fields in the jet base of the gamma ray bright blazar PKS 1510-08
Comparing two externally irradiated protostars in Ophiuchus
Filaments and Massive Star Formation
Cluster formation within filamentary molecular clouds
Testing a New Mode for Cloud Collapse in Galaxy Centers
Testing a New Mode for Cloud Collapse in Galaxy Centers
Cluster formation within filamentary molecular clouds
A Hunt for Massive Starless Cores II. Follow-Up of Most Promising Candidates to Measure Dynamics and Deuteration
Direct detection of a quasar cloud to protostellar envelopes
Flowing the gas from molecular hyperwind through the Sunyaev-Zeldovich Effect
Direct detection of a quasar hyperwind through the Sunyaev-Zeldovich Effect
Direct detection of a quasar hyperwind through the Sunyaev-Zeldovich Effect
Direct detection of a quasar hyperwind through the Sunyaev-Zeldovich Effect
Direct detection of a quasar hyperwind through the Sunyaev-Zeldovich Effect
Flowing the gas from molecular clouds to protostellar envelopes
Flowing the gas from molecular clouds to protostellar envelopes
Direct detection of a quasar hyperwind through the Sunyaev-Zeldovich Effect
Resolving the sub-arcsec structure surrounding the AGB star R Leo
High-resolution mapping of molecular gas in starbursts at z ~ 1.5
Characterizing Absorption-Selected High-z Galaxies (CASH) Survey
Probing how far out planets
ICE in the embers: Testing the existence of cold molecular gas in a lensed compact quiescent galaxy at z=2.15
Direct detection of a quasar
Direct detection of a quasa
04:44:49 05:36:18 2016.1.01235.S Jupiter_a_07_TM1 can form Constraining Jupiter's atmospheric chemistry and dynamics from post-SL9 species mapping Cavalié EU 12-m 7
05:11:28 06:54:42 2016.1.01235.S Jupiter_a_07_TM1 Constraining Jupiter's atmospheric chemistry and dynamics from post-SL9 species mapping Cavalié EU 7-m 7
05:38:56 06:43:34 2016.1.00226.S PSOJ183+_a_07_TM1 A comprehensive study of the interstellar medium 830 Myr after the Big Bang Decarli EU 12-m 7
06:56:42 07:24:15 2016.1.00284.S J142413_b_08_TM1 The role of OH outflows in the high redshift Universe Bernard-Salas EU 12-m 8
07:25:38 08:51:54 2016.1.01235.S Jupiter_a_07_TP Constraining Jupiter's atmospheric chemistry and dynamics from post-SL9 species mapping Cavalié EU Total Power 7
07:25:44 09:28:54 2016.1.01235.S Jupiter_a_07_TM1 Constraining Jupiter's atmospheric chemistry and dynamics from post-SL9 species mapping Cavalié EU 7-m 7
07:40:48 08:20:11 2016.1.00441.S alfa_cen_a_09_TM1 Probing the chromospheric heating regions of the solar analogue alpha Centauri with ALMA Liseau EU 12-m 9
08:21:40 08:49:43 2016.1.00284.S J142413_a_08_TM1 The role of OH outflows in the high redshift Universe Bernard-Salas EU 12-m 8
08:50:31 09:50:51 2016.1.01253.S HD131835_a_08_TM1 Origin and evolution of atomic gas in debris discs - A new way of studying planetary systems Kral EU 12-m 8
08:56:26 10:30:13 2016.1.01548.S W44_Bull_a_07_TP Imaging Ultra-High-Velocity Molecular Yamada Gas in the W44 Supernova Remnant EA Total Power 7
09:29:52 11:29:08 2016.1.00035.S H-MM1_a_07_7M Nuclear spin ratios as clues to the origin of deuterated ammonia Harju EU 7-m 7
09:54:51 10:15:06 2016.1.00901.S Sgr_A_st_a_09_TM1 Seeing to the Event Horizon: Terahertz Spectra of Sagittarius A* Bower EA 12-m 9
10:34:06 10:56:00 2016.1.00901.S Sgr_A_st_a_06_TM1 Seeing to the Event Horizon: Terahertz Spectra of Sagittarius A* Bower EA 12-m 6
11:08:43 11:45:38 2015.1.01137.S HD_16329_a_08_TE Difference of the Abundance of Cold Atomic Carbon between T Tauri and Herbig AeBe stars Tsukagoshi EA 12-m 8
12:06:48 14:01:24 2016.1.01063.S J2054-00_a_09_TM1 Studying star formation via the [OI] 63 Ferkinhoff micron line within a billion years of the Big Bang NA 12-m 9
14:19:22 15:42:16 2016.1.00641.S 10199 Ch_a_06_TP Search for gas emission from Centaur Leiva Chariklo CL Total Power 6
14:53:57 16:29:12 2016.1.00641.S 10199 Ch_a_06_7M Search for gas emission from Centaur Leiva Chariklo CL 7-m 6
22:53:07 23:59:13 2016.1.01338.S LBS23-so_a_06_TM1 Flowing the gas from molecular clouds to protostellar envelopes Mardones CL 12-m 6

2017-03-23

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:09:12</td>
<td>01:28:25</td>
<td>2016.1.01398.S</td>
<td>H0542077_a_03_TM1</td>
<td>The role of the environment in shaping the CMF in the L1641 Molecular Clouds</td>
<td>Polychroni</td>
<td>CL</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>01:47:52</td>
<td>03:44:52</td>
<td>2016.1.00104.S</td>
<td>hd92945_a_07_7M</td>
<td>Double-ring debris disks at 10s of au: probing how far out planets can form</td>
<td>Marino</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>01:57:49</td>
<td>03:53:04</td>
<td>2016.1.01208.S</td>
<td>COSMOS_2_a_06_TM1</td>
<td>Gas fraction and depletion time of massive main sequence galaxies at z=3-5</td>
<td>Schinnerer</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>03:26:06</td>
<td>04:52:25</td>
<td>2016.1.01235.S</td>
<td>Jupiter_a_07_TP</td>
<td>Constraining Jupiter's atmospheric chemistry and dynamics from post-SL9 species mapping</td>
<td>Cavalié</td>
<td>EU</td>
<td>Total Power</td>
<td>7</td>
</tr>
<tr>
<td>03:46:16</td>
<td>04:47:30</td>
<td>2016.1.00254.S</td>
<td>NGC3227_a_06_7M</td>
<td>Nuclear cold molecular gas, star formation, and the dusty torus of nearby Seyfert galaxies</td>
<td>Alonso-Herrero</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>04:07:22</td>
<td>04:46:50</td>
<td>2016.1.00568.S</td>
<td>SHOC_391_a_07_TM1</td>
<td>Breaking the Low Metallicity Limit for CO Detections</td>
<td>Kepley</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>04:48:28</td>
<td>05:45:20</td>
<td>2016.1.00164.S</td>
<td>M83_a_07_TM1</td>
<td>Chemical Diagnostics of Extragalactic Harada ISM: Shock-Induced Evolution in M83 Nucleus</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Project Title

Program

Survey in the UDF - An ALMA Large Array

ASPECS: The ALMA SPECtral line Program

ALMA

Project Code

SchedBlock

### Start (UT)	End (UT)	PI	Executive	Array	Band
04:47:11 | 06:28:40 | 2016.A.00013.S | Proxima_a_06_7M | SEARCHING FOR A KUIPER BELT ANALOG IN PROXIMA CENTAURI WITH ALMA | Anglada | EU | 7-m | 6
04:48:12 | 05:57:16 | 2016.1.01543.S | Europa_a_07_7M | The Chlorinity and Chemical Composition of Europa's Subsurface Ocean | Kuan | EA | 12-m | 7
05:34:54 | 07:10:47 | 2016.1.00928.S | Lup1-4_a_06_TP | Early Stages of Dense Core Evolution | Tachihara | NA | Total Power | 6
05:58:56 | 07:08:03 | 2016.1.01543.S | Europa_a_07_7M | The Chlorinity and Chemical Composition of Europa's Subsurface Ocean | Kuan | EA | 12-m | 7

2017-03-24

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
</table>
| 03:15:54 | 04:46:20 | 2016.1.00912.S | NGC_4402_a_06_7M | ALMA Mapping of a Great Case of Ongoing Ram Pressure Stripping in the Nearby Virgo Cluster | Kenney | NA | 7-m | 6
| 04:47:11 | 06:28:40 | 2016.A.00013.S | Proxima_a_06_7M | SEARCHING FOR A KUIPER BELT ANALOG IN PROXIMA CENTAURI WITH ALMA | Anglada | EU | 7-m | 6
| 04:48:12 | 05:57:16 | 2016.1.01543.S | Europa_a_07_7M | The Chlorinity and Chemical Composition of Europa's Subsurface Ocean | Kuan | EA | 12-m | 7
| 05:34:54 | 07:10:47 | 2016.1.00928.S | Lup1-4_a_06_TP | Early Stages of Dense Core Evolution | Tachihara | NA | Total Power | 6
| 05:58:56 | 07:08:03 | 2016.1.01543.S | Europa_a_07_7M | The Chlorinity and Chemical Composition of Europa's Subsurface Ocean | Kuan | EA | 12-m | 7
2017-03-25

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:35:45</td>
<td>02:24:41</td>
<td>2016.1.00330.S</td>
<td>AzTEC-3_a_06_T1M</td>
<td>Detailed Gas and Dust Physics in "Normal" Galaxies and Starbursts at z=2-5</td>
<td>Riechers</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:26:25</td>
<td>04:27:45</td>
<td>2016.1.01208.S</td>
<td>COSMOS_2_a_06_T1M</td>
<td>Gas fraction and depletion time of massive main sequence galaxies at z=3-5</td>
<td>Schinnerer</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>04:40:21</td>
<td>05:33:20</td>
<td>2016.1.01308.S</td>
<td>ULASJ123_a_06_T1M</td>
<td>Do Hyper-Luminous Dusty Quasars at z>2.5 Live in Massive Gas-Rich Disks?</td>
<td>Banerji</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>05:45:27</td>
<td>06:15:08</td>
<td>2016.1.01340.S</td>
<td>H1429002_a_06_T1M</td>
<td>ALMA as a sensitive probe of the stellar IMF and star-formation mode across the cosmic time</td>
<td>Zhang</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>06:16:04</td>
<td>06:49:27</td>
<td>2016.1.01346.S</td>
<td>AGAL327_a_06_T1M</td>
<td>Galactic Census of All Massive Starless Cores within 5 kpc</td>
<td>Pillai</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>06:50:13</td>
<td>08:10:20</td>
<td>2016.1.01346.S</td>
<td>AGAL331_a_06_T1M</td>
<td>Galactic Census of All Massive Starless Cores within 5 kpc</td>
<td>Pillai</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>08:11:51</td>
<td>09:54:49</td>
<td>2016.1.00985.S</td>
<td>G0253m1_a_06_T1M</td>
<td>Dense Core Magnetic Fields in High-Mass Infrared Dark Clouds</td>
<td>Pillai</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>09:55:33</td>
<td>11:00:18</td>
<td>2016.1.00985.S</td>
<td>G0253m1_a_06_T1M</td>
<td>Dense Core Magnetic Fields in High-Mass Infrared Dark Clouds</td>
<td>Pillai</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>12:40:38</td>
<td>13:49:10</td>
<td>2016.1.00641.S</td>
<td>10199 Ch_a_06_T1M</td>
<td>Search for gas emission from Centaur Leiva Chariklo</td>
<td>Takami</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>14:30:54</td>
<td>15:38:59</td>
<td>2016.1.01308.S</td>
<td>ULASJ231_a_06_T1M</td>
<td>Do Hyper-Luminous Dusty Quasars at z>2.5 Live in Massive Gas-Rich Disks?</td>
<td>Takami</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
</tbody>
</table>

2017-03-26

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:32:21</td>
<td>03:35:01</td>
<td>2016.1.01208.S</td>
<td>COSMOS_2_a_06_T1M</td>
<td>Gas fraction and depletion time of massive main sequence galaxies at z=3-5</td>
<td>Schinnerer</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:50:15</td>
<td>03:23:52</td>
<td>2016.1.00033.S</td>
<td>CIT_6_a_07_T1M</td>
<td>A bipolar outflow of CIT 6; introduced by an eccentric long-period binary?</td>
<td>Kim</td>
<td>EA</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>03:24:42</td>
<td>04:56:15</td>
<td>2016.1.00843.S</td>
<td>n4636_a_06_T1M</td>
<td>CO and AGN feedback in massive galaxies</td>
<td>Temi</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>03:49:37</td>
<td>05:04:32</td>
<td>2016.1.00972.S</td>
<td>NGC_3627_a_07_T1M</td>
<td>Revealing the Cause of "Starburst"-like Conversion Factors in Nearby Galaxy Centers</td>
<td>Sandstrom</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>04:57:36</td>
<td>06:10:08</td>
<td>2016.1.01346.S</td>
<td>AGAL313_a_06_T1M</td>
<td>Galactic Census of All Massive Starless Cores within 5 kpc</td>
<td>Pillai</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>05:22:48</td>
<td>06:48:34</td>
<td>2016.1.01539.S</td>
<td>Lupus3a_a_06_T1M</td>
<td>Distribution of dense molecular gas in Mardones the active center of</td>
<td>Pillai</td>
<td>CL</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>Time</td>
<td>Start Time</td>
<td>Proposal ID</td>
<td>Title</td>
<td>Authors</td>
<td>Telescope</td>
<td>Project</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>-------------</td>
<td>-------</td>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>05:23:29</td>
<td>06:09:03</td>
<td>2016.1.00263.S</td>
<td>Lupus3 Dissecting the clumpy structure of the SF powered massive molecular outflow of ESO320-G030</td>
<td>Pereira Santaella</td>
<td>EU</td>
<td>12-m</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>06:10:16</td>
<td>06:38:53</td>
<td>2016.1.00441.S</td>
<td>alpha_cen_a_08_TM1 Probing the chromospheric heating regions of the solar analogue alpha Centauri with ALMA</td>
<td>Liseau</td>
<td>EU</td>
<td>12-m</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>06:22:25</td>
<td>08:00:26</td>
<td>2016.1.00319.S</td>
<td>EES2009_a_06_7M Comparing two externally irradiated protostars in Ophiuchus</td>
<td>Lindberg</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>06:39:50</td>
<td>07:08:23</td>
<td>2016.1.00441.S</td>
<td>alpha_cen_a_07_TM1 Probing the chromospheric heating regions of the solar analogue alpha Centauri with ALMA</td>
<td>Liseau</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>07:24:19</td>
<td>08:24:07</td>
<td>2016.1.00112.S</td>
<td>PKS_1510_a_06_TM1 Probing the magnetic fields in the jet base of the gamma ray bright blazar PKS 1510-08</td>
<td>Park</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>08:43:00</td>
<td>10:31:19</td>
<td>2016.1.01253.S</td>
<td>HD181327_a_08_TM1 Origin and evolution of atomic gas in debris discs - A new way of studying planetary systems</td>
<td>Kral</td>
<td>EU</td>
<td>12-m</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>09:06:41</td>
<td>10:39:11</td>
<td>2016.1.00035.S</td>
<td>H-MM1_a_07_TP Nuclear spin ratios as clues to the origin of deuterated ammonia</td>
<td>Harju</td>
<td>EU</td>
<td>Total Power</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>09:36:17</td>
<td>11:09:02</td>
<td>2015.1.00981.S</td>
<td>3C_368_a_09_7M A survey of the [NII]205 um / [CII]ratio at z=1</td>
<td>Brisbin</td>
<td>CL</td>
<td>7-m</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10:35:40</td>
<td>11:43:52</td>
<td>2016.1.01439.S</td>
<td>SGR1900+_a_07_TM1 Imaging the dust destruction cavity around the magnetar SGR 1900+14</td>
<td>Rea</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>