### ALMA Observing Activity from 2017-07-03T17:59:00 to 2017-07-10T18:00:00
#### QA0 pass executions

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>23:18:56</td>
<td>00:56:07</td>
<td>2016.1.00168.S</td>
<td>g327.3-0_a_06_7M</td>
<td>Filament fragmentation in the high-mass Star Forming region G327.3-0.6</td>
<td>Schilke</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>23:24:18</td>
<td>00:50:43</td>
<td>2016.1.00761.S</td>
<td>ISO-Oph__a_06_TM1</td>
<td>Are Brown Dwarf disks in rho-Oph truncated?</td>
<td>Natta</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
</tbody>
</table>

#### 2017-07-04

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:22:01</td>
<td>02:59:20</td>
<td>2016.1.00168.S</td>
<td>g327.3-0_a_06_7M</td>
<td>Filament fragmentation in the high-mass Star Forming region G327.3-0.6</td>
<td>Schilke</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>01:29:43</td>
<td>02:32:06</td>
<td>2015.1.00754.S</td>
<td>3C318_a_07_TE</td>
<td>Zooming in on the AGN-driven star formation in distant, powerful, radio-loud AGN</td>
<td>Podigachoski</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>02:34:12</td>
<td>03:44:55</td>
<td>2016.1.01269.S</td>
<td>RXCJ1504_a_07_TM1</td>
<td>Stimulated AGN feedback in cluster cores</td>
<td>McNamara</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>02:59:34</td>
<td>04:44:12</td>
<td>2016.1.00620.S</td>
<td>W49N_a_06_7M</td>
<td>The Core Mass Function and its Evolution in an Extreme Protocluster</td>
<td>Ginsburg</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>03:45:20</td>
<td>04:49:19</td>
<td>2016.1.01299.S</td>
<td>IRAS1721_a_07_TM2</td>
<td>Architecture and disk structure in a high-mass protobinary system</td>
<td>Kraus</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>06:20:46</td>
<td>07:33:53</td>
<td>2016.1.00870.S</td>
<td>sgrra_st_a_06_TM1</td>
<td>SgrA* Accretion Confirming a possible ALMA detection of Broad H30alpha Emission</td>
<td>Murchikova</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>08:14:57</td>
<td>09:36:30</td>
<td>2015.1.00274.S</td>
<td>NGC253_a_07_TE</td>
<td>A Close Look into the Blast Furnace: the Core of the NGC253 Starburst at One Parsec Resolution</td>
<td>Bolatto</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>08:40:49</td>
<td>10:45:10</td>
<td>2016.1.00907.S</td>
<td>hr_8799_a_07_7M</td>
<td>Planet-disk interactions in the HR 8799 system</td>
<td>Faramaz</td>
<td>CL</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>09:36:45</td>
<td>10:54:52</td>
<td>2016.1.00543.S</td>
<td>mADF22_b_03_TM1</td>
<td>Molecular Gas Mapping of the Node within the Cosmic Web at z = 3</td>
<td>Umehata</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>10:45:25</td>
<td>12:22:38</td>
<td>2016.2.00060.S</td>
<td>SDSS_J00_b_07_7M</td>
<td>How extreme are the extreme star-forming hosts of optically-bright quasars at 2 &lt; z &lt; 4?</td>
<td>Hatziminaoglou</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>12:22:48</td>
<td>14:00:12</td>
<td>2016.2.00060.S</td>
<td>SDSS_J00_b_07_7M</td>
<td>How extreme are the extreme star-forming hosts of optically-bright quasars at 2 &lt; z &lt; 4?</td>
<td>Hatziminaoglou</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>14:14:25</td>
<td>14:48:50</td>
<td>2015.1.00404.S</td>
<td>NGC_1672_a_07_TE</td>
<td>Gas fueling and outflow around massive black holes</td>
<td>Combes</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>14:20:16</td>
<td>16:18:40</td>
<td>2016.1.00596.S</td>
<td>LHA_120-_b_08_7M</td>
<td>Dissecting molecular clouds at 0.2 pc resolution in our nearest low-metallicity laboratory: where is the CO-dark gas?</td>
<td>Chevance</td>
<td>EU</td>
<td>7-m</td>
<td>8</td>
</tr>
<tr>
<td>16:18:55</td>
<td>18:23:33</td>
<td>2015.1.00393.S</td>
<td>Target_a_1_08_7M</td>
<td>CI observations toward compact molecular clouds associated with isolated intermediate- and high-mass YSOs in the LMC</td>
<td>Harada</td>
<td>EA</td>
<td>7-m</td>
<td>8</td>
</tr>
<tr>
<td>18:36:07</td>
<td>19:28:22</td>
<td>2016.2.00033.S</td>
<td>CW_Leo_b_06_7M</td>
<td>Millimeter line variability in IRC +10216 with ALMA Compact Array.</td>
<td>He</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>18:59:22</td>
<td>19:51:11</td>
<td>2016.1.00643.S</td>
<td>MACS1206_a_06_TM1</td>
<td>High-resolution CO observations of clumpy strongly-lensed galaxies at 0.6&lt;z&lt;1.5</td>
<td>Richard</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>19:29:01</td>
<td>20:14:57</td>
<td>2016.2.00053.S</td>
<td>NGC3169_a_06_7M</td>
<td>WISDOM: From Small-Scale</td>
<td>Liu</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
</tbody>
</table>
### 2017-07-05

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:06:14</td>
<td>01:43:43</td>
<td>2016.100168.S</td>
<td>g327.3-0_a_06_7M</td>
<td>Filament fragmentation in the high-mass Star Forming region G327.3-0.6</td>
<td>Schilke</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>00:43:46</td>
<td>01:12:53</td>
<td>2015.100113.S</td>
<td>ARP220_d_07_TE</td>
<td>Arp 220 Nuclear Disks at 50 mas Resolution</td>
<td>Scoville</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>01:16:34</td>
<td>01:43:00</td>
<td>2015.100113.S</td>
<td>ARP220_c_03_TE</td>
<td>Arp 220 Nuclear Disks at 50 mas Resolution</td>
<td>Scoville</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>01:43:18</td>
<td>03:03:10</td>
<td>2016.100870.S</td>
<td>sgra_sta_a_06_TM1</td>
<td>SgrA* Accretion Confirining a possible ALMA detection of Broad H 30alpha Emission</td>
<td>Murchikova</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:43:54</td>
<td>03:21:20</td>
<td>2016.100168.S</td>
<td>g327.3-0_a_06_7M</td>
<td>Filament fragmentation in the high-mass Star Forming region G327.3-0.6</td>
<td>Schilke</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>03:21:38</td>
<td>05:01:23</td>
<td>2016.100620.S</td>
<td>W49N_a_06_7M</td>
<td>The Core Mass Function and its Evolution in an Extreme Protocluster</td>
<td>Ginsburg</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>03:31:21</td>
<td>04:02:48</td>
<td>2016.101347.S</td>
<td>AGAL351_a_06_TM1</td>
<td>Extremely high velocity jets from massive YSOs</td>
<td>Leurini</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>04:35:16</td>
<td>05:47:24</td>
<td>2016.100870.S</td>
<td>sgra_sta_a_06_TM1</td>
<td>SgrA* Accretion Confirining a possible ALMA detection of Broad H 30alpha Emission</td>
<td>Murchikova</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>05:01:34</td>
<td>06:41:06</td>
<td>2016.100620.S</td>
<td>W49N_a_06_7M</td>
<td>The Core Mass Function and its Evolution in an Extreme Protocluster</td>
<td>Ginsburg</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>06:02:34</td>
<td>06:50:33</td>
<td>2016.100344.S</td>
<td>HD169142_a_06_TM2</td>
<td>Detecting the kinematical signature of Perez accreting protoplanets with ALMA long baselines</td>
<td>CL</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>06:50:45</td>
<td>08:11:42</td>
<td>2016.101347.S</td>
<td>AGAL010_a_06_TM1</td>
<td>Extremely high velocity jets from massive YSOs</td>
<td>Leurini</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>08:12:05</td>
<td>09:33:49</td>
<td>2015.100274.S</td>
<td>NGC253_a_07_TE</td>
<td>A Close Look into the Blast Furnace: the Core of the NGC253 Starburst at One Parsec Resolution</td>
<td>Bolatto</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>08:55:58</td>
<td>11:00:22</td>
<td>2016.100907.S</td>
<td>hr_8799_a_07_7M</td>
<td>Planet-disk interactions in the HR 8799 system</td>
<td>Faramaz</td>
<td>CL</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>09:34:09</td>
<td>10:55:11</td>
<td>2016.101435.S</td>
<td>NGC_628_a_07_TM1</td>
<td>ALMA-LEGSU: Connecting Star Formation to its Fuel</td>
<td>Dale</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>11:00:32</td>
<td>13:04:58</td>
<td>2016.200042.S</td>
<td>vv114_a_07_7M</td>
<td>The True Aspect of Gas-rich Merging Galaxies</td>
<td>Saito</td>
<td>EA</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>13:14:37</td>
<td>14:36:21</td>
<td>2016.200042.S</td>
<td>iras051_a_07_7M</td>
<td>The True Aspect of Gas-rich Merging Galaxies</td>
<td>Saito</td>
<td>EA</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>14:54:09</td>
<td>15:12:55</td>
<td>2016.A00008.T</td>
<td>S255_NIR_c_04_TM1</td>
<td>Monitoring the first ever detected accretion burst from a massive (proto)star: How accretion turns into ejection</td>
<td>Cesarioni</td>
<td>EU</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>15:24:20</td>
<td>15:43:07</td>
<td>2016.A00008.T</td>
<td>S255_NIR_c_03_TM1</td>
<td>Monitoring the first ever detected accretion burst from a massive (proto)star: How accretion turns into ejection</td>
<td>Cesarioni</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>15:45:09</td>
<td>16:31:46</td>
<td>2016.101499.S</td>
<td>SPT0418_a_07_TM1</td>
<td>The Dynamics and Structure of Dusty Like Starbursts in the First 1.5Gyr</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>16:07:12</td>
<td>17:36:45</td>
<td>2016.200042.S</td>
<td>iras051_a_07_7M</td>
<td>The True Aspect of Gas-rich Merging Galaxies</td>
<td>Saito</td>
<td>EA</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>--------------</td>
<td>----</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>00:36:21</td>
<td>01:19:53</td>
<td>ngc4945_a_07_TM1</td>
<td>SchedBlock</td>
<td>Black Hole Masses, central parsec gas dynamics, and Event Horizon Detectability in a sample of nearby galaxies</td>
<td>Nagar</td>
<td>CL</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>00:58:49</td>
<td>02:42:58</td>
<td>AGAL350_a_06_7M</td>
<td>SchedBlock</td>
<td>Galactic Census of All Massive Starless Cores within 5 kpc</td>
<td>Pillai</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>01:21:22</td>
<td>02:42:18</td>
<td>sgra_sta_a_06_TM1</td>
<td>SchedBlock</td>
<td>SgrA* Accretion Confirming a possible ALMA detection of Broad H 30alpha Emission</td>
<td>Murchikova</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:42:26</td>
<td>04:04:51</td>
<td>sgra_sta_a_06_TM1</td>
<td>SchedBlock</td>
<td>SgrA* Accretion Confirming a possible ALMA detection of Broad H 30alpha Emission</td>
<td>Murchikova</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:43:07</td>
<td>04:26:53</td>
<td>AGAL350_a_06_7M</td>
<td>SchedBlock</td>
<td>Galactic Census of All Massive Starless Cores within 5 kpc</td>
<td>Pillai</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>04:14:06</td>
<td>04:48:07</td>
<td>NGC_6334_a_06_TM2</td>
<td>SchedBlock</td>
<td>The formation of high-mass binary systems by core/disk fragmentation</td>
<td>Sanhueza</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>04:27:05</td>
<td>06:12:21</td>
<td>AGAL350_a_06_7M</td>
<td>SchedBlock</td>
<td>Galactic Census of All Massive Starless Cores within 5 kpc</td>
<td>Pillai</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>04:48:38</td>
<td>05:51:31</td>
<td>IRAS2012_a_06_TM2</td>
<td>SchedBlock</td>
<td>Dissecting the circumstellar disk around the B-type protostar IRAS20126+4104</td>
<td>Cesaroni</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>07:30:44</td>
<td>09:34:55</td>
<td>hr_8799_a_07_7M</td>
<td>SchedBlock</td>
<td>Planet-disk interactions in the HR 8799 system</td>
<td>Faramaz</td>
<td>CL</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>07:37:42</td>
<td>08:15:12</td>
<td>2MASX_J0_a_07_TM1</td>
<td>SchedBlock</td>
<td>Mapping Dust in an Occulting Dwarf Galaxy</td>
<td>Holwerda</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>08:18:19</td>
<td>09:45:03</td>
<td>NGC6822_a_03_TM1</td>
<td>SchedBlock</td>
<td>Chemical Composition of Molecular Clouds in the Nearby Metal-Poor Galaxy NGC6822</td>
<td>Nishimura</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>09:35:09</td>
<td>10:39:35</td>
<td>T_Ind_a_07_7M</td>
<td>SchedBlock</td>
<td>DEATH STAR: DEtermining Accurate mass-loss rates of THERmally pulsing AGB STARS</td>
<td>Ramstedt</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>09:45:17</td>
<td>11:06:59</td>
<td>NGC_628_a_07_TM1</td>
<td>SchedBlock</td>
<td>ALMA-LEGUS: Connecting Star Formation to its Fuel</td>
<td>Dale</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>10:42:13</td>
<td>12:45:30</td>
<td>SDSS_J01_a_07_7M</td>
<td>SchedBlock</td>
<td>How extreme are the extreme star-forming hosts of optically-bright quasars at 2 &lt; z &lt; 4?</td>
<td>Hatziminaoglou</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>11:07:13</td>
<td>12:29:03</td>
<td>AL75.1_a_07_TM1</td>
<td>SchedBlock</td>
<td>Spatially-resolved star formation at high-z: are AGN host galaxies special?</td>
<td>Harrison</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>13:35:11</td>
<td>15:17:43</td>
<td>2MASS_J0_e_07_TM1</td>
<td>SchedBlock</td>
<td>A Complete Survey of Disk Masses, Sizes, and Particle Growth across the Stellar/Substellar Transition</td>
<td>Patience</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>14:19:06</td>
<td>16:22:15</td>
<td>L1544_a_07_7M</td>
<td>SchedBlock</td>
<td>On the brink of star formation</td>
<td>Caselli</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>14:29:46</td>
<td>15:54:01</td>
<td>LBS23-no_a_06_TP</td>
<td>SchedBlock</td>
<td>Flowing the gas from molecular clouds to protostellar envelopes</td>
<td>Mardones</td>
<td>CL</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>15:18:04</td>
<td>16:48:52</td>
<td>2MASS_J0_f_07_TM1</td>
<td>SchedBlock</td>
<td>A Complete Survey of Disk Masses, Sizes, and Particle Growth across the Stellar/Substellar Transition</td>
<td>Patience</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>15:54:11</td>
<td>17:16:59</td>
<td>LBS23-no_a_06_TP</td>
<td>SchedBlock</td>
<td>Flowing the gas from molecular clouds to protostellar envelopes</td>
<td>Mardones</td>
<td>CL</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>16:22:25</td>
<td>18:11:24</td>
<td>L1544_a_07_7M</td>
<td>SchedBlock</td>
<td>On the brink of star formation</td>
<td>Caselli</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>17:03:54</td>
<td>18:25:29</td>
<td>0570_537_a_06_TM1</td>
<td>SchedBlock</td>
<td>After the Fall: Zooming In on the Molecular Fuel in Post-Starburst Galaxies</td>
<td>Smith</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>18:13:43</td>
<td>20:07:05</td>
<td>ngc3256_a_07_7M</td>
<td>SchedBlock</td>
<td>The True Aspect of Gas-rich Merging Galaxies</td>
<td>Saito</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>18:25:37</td>
<td>20:41:32</td>
<td>0570_537_a_06_TM1</td>
<td>SchedBlock</td>
<td>After the Fall: Zooming In on the Molecular Fuel in Post-Starburst Galaxies</td>
<td>Smith</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>20:03:34</td>
<td>21:07:45</td>
<td>Hn_18_a_06_TM1</td>
<td>SchedBlock</td>
<td>Non accreting proto-planetary discs: a Rosottl new evolutionary class?</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>20:29:14</td>
<td>22:33:33</td>
<td>ngc3256_a_07_7M</td>
<td>SchedBlock</td>
<td>The True Aspect of Gas-rich Merging Galaxies</td>
<td>Saito</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>----</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>2017-07-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:34:43</td>
<td>01:27:26</td>
<td>2016.1.01239.S</td>
<td>Sz76_a_06_TM1</td>
<td>Aiming for completeness: the final Lupus disk demography</td>
<td>van Terwisga</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:10:13</td>
<td>02:12:34</td>
<td>2016.2.00025.S</td>
<td>TW_Oph_a_07_7M</td>
<td>DEATH STAR: DEtermining Accurate mass-loss rates of THerma]ly pulsing AGB STARs</td>
<td>Ramstedt</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>01:29:20</td>
<td>02:14:07</td>
<td>2016.1.00715.S</td>
<td>2MASS_J1_a_06_TM2</td>
<td>Origin of transitional disks with small dust cavities</td>
<td>Facchini</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:12:51</td>
<td>04:09:55</td>
<td>2016.1.01115.S</td>
<td>G10.3-0_a_07_7M</td>
<td>Fragmentation and chemical evolution of in high mass star formation</td>
<td>Wang</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>02:14:21</td>
<td>03:29:51</td>
<td>2016.1.00544.S</td>
<td>PSOJ231-a_06_TM1</td>
<td>The birth of the giants: Imaging spectacular mergers at the dawn of galaxy formation</td>
<td>Banados</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>03:30:12</td>
<td>04:19:44</td>
<td>2016.1.00771.S</td>
<td>SSTc2d_l_a_06_TM1</td>
<td>The ALMA edge: Probing the Gas Structure in Edge-on T Tauri Disks</td>
<td>Duchene</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>04:10:11</td>
<td>06:11:53</td>
<td>2016.1.01115.S</td>
<td>G10.3-0-a_07_7M</td>
<td>Fragmentation and chemical evolution of in high mass star formation</td>
<td>Wang</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>06:12:08</td>
<td>07:26:57</td>
<td>2016.1.01182.S</td>
<td>EC1_G005_a_06_7M</td>
<td>(Proto)Binaries and multiplicity properties in high-mass star-forming clusters</td>
<td>Grellmann</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>07:48:04</td>
<td>09:52:34</td>
<td>2016.1.00907.S</td>
<td>hr_8799_a_07_7M</td>
<td>Planet-disk interactions in the HR 8799 system</td>
<td>Faramaz</td>
<td>CL</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>08:16:25</td>
<td>09:40:18</td>
<td>2016.1.01262.S</td>
<td>ID76989_a_06_TM1</td>
<td>Caught in the act: ALMA witnesses galaxy transformation</td>
<td>Rowlands</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>09:43:38</td>
<td>11:00:27</td>
<td>2016.1.00735.S</td>
<td>XID-156_a_07_TM1</td>
<td>Spatially-resolved star formation at high-z: are AGN host galaxies special?</td>
<td>Harrison</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>09:52:45</td>
<td>10:59:37</td>
<td>2016.2.00060.S</td>
<td>SDSS_J01_a_07_7M</td>
<td>How extreme are the extreme star-forming hosts of optically-bright quasars at 2 &lt; z &lt; 4?</td>
<td>Hatziminaoglou</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>11:01:00</td>
<td>12:17:20</td>
<td>2016.1.00735.S</td>
<td>XID-156_a_07_TM1</td>
<td>Spatially-resolved star formation at high-z: are AGN host galaxies special?</td>
<td>Harrison</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>12:17:49</td>
<td>12:51:37</td>
<td>2016.1.00209.S</td>
<td>Haro_5a_a_06_TM1</td>
<td>Multi-scale disk and envelope kinematics around the most extremely accreting young stars</td>
<td>Takami</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>23:11:20</td>
<td>00:27:32</td>
<td>2016.1.00931.S</td>
<td>NGC_4921_a_06_TM1</td>
<td>An Anemone galaxy: Dense clouds and filaments at the leading edge of ram pressure stripped Coma spiral NGC 4921</td>
<td>Kenney</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-07-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:36:16</td>
<td>01:54:34</td>
<td>2016.1.00374.S</td>
<td>W_Hya_a_06_TM2</td>
<td>Spatially resolving the wind acceleration zone of the AGB star W Hya</td>
<td>Ohnaka</td>
<td>CL</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:32:55</td>
<td>03:05:41</td>
<td>2016.1.01115.S</td>
<td>G10.3-0_a_06_7M</td>
<td>Fragmentation and chemical evolution of in high mass star formation</td>
<td>Wang</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>01:54:53</td>
<td>03:04:42</td>
<td>2016.1.00577.S</td>
<td>G333.6-0_a_06_TM1</td>
<td>Mapping a binary O-star system in formation. The Milky Way monster GAL333.6-0.2</td>
<td>Kumar</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>03:04:52</td>
<td>04:14:29</td>
<td>2016.1.00577.S</td>
<td>G333.6-0_a_06_TM1</td>
<td>Mapping a binary O-star system in formation. The Milky Way monster GAL333.6-0.2</td>
<td>Kumar</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>03:05:51</td>
<td>04:47:35</td>
<td>2016.1.01345.S</td>
<td>G23.33-0_b_06_7M</td>
<td>Investigating a Young, Extreme High-Mass Star-Forming Region</td>
<td>Sanhueza</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>04:18:01</td>
<td>04:53:12</td>
<td>2016.1.01325.S</td>
<td>L483_b_06_TM2</td>
<td>Chemical Characterization of a Candidate Warm Carbon-Chain Chemistry Source L483</td>
<td>Oya</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>05:06:33</td>
<td>05:43:00</td>
<td>2016.1.01325.S</td>
<td>L483_a_06_TM2</td>
<td>Chemical Characterization of a</td>
<td>Oya</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>--------------</td>
<td>----</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>00:28:20</td>
<td>00:44:27</td>
<td>2016.1.00691.S</td>
<td>Callisto_a_06_TM1</td>
<td>Thermal Properties of Icy Satellites</td>
<td>de Kleer</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>00:49:31</td>
<td>01:05:53</td>
<td>2016.1.00691.S</td>
<td>Europa_b_06_TM1</td>
<td>Thermal Properties of Icy Satellites</td>
<td>de Kleer</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>00:56:23</td>
<td>02:31:49</td>
<td>2016.1.00053.S</td>
<td>G337.342_a_06_7M</td>
<td>Turbulence sets the initial conditions for star formation?</td>
<td>Rathborne</td>
<td>OTHER</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>01:26:12</td>
<td>02:36:56</td>
<td>2016.1.00577.S</td>
<td>G333.6-0_a_06_7M</td>
<td>Mapping a binary O-star system in formation. The Milky Way monster GAL333.6-0.2</td>
<td>Kumar</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:59:00</td>
<td>04:33:56</td>
<td>2016.1.00053.S</td>
<td>G337.342_a_06_7M</td>
<td>Turbulence sets the initial conditions for star formation?</td>
<td>Rathborne</td>
<td>OTHER</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>03:15:54</td>
<td>04:44:29</td>
<td>2016.1.00243.S</td>
<td>the_20_k_a_06_TM1</td>
<td>Confirming Deeply Embedded Protostellar Population in the Central Molecular Zone</td>
<td>Zhang</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>07:12:41</td>
<td>08:29:10</td>
<td>2016.1.00580.S</td>
<td>eADF22ii_i_a_06_TM1</td>
<td>Confusion-free Mapping of the Node within the Cosmic Web at z = 3</td>
<td>Umehata</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>08:01:49</td>
<td>09:56:52</td>
<td>2016.2.00042.S</td>
<td>eso148-i_a_07_7M</td>
<td>The True Aspect of Gas-rich Merging Galaxies</td>
<td>Saito</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>08:29:19</td>
<td>09:44:09</td>
<td>2016.1.00580.S</td>
<td>eADF22ii_i_a_06_TM1</td>
<td>Confusion-free Mapping of the Node within the Cosmic Web at z = 3</td>
<td>Umehata</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>09:44:24</td>
<td>10:13:58</td>
<td>2016.1.00323.S</td>
<td>NGC_34_a_07_TM1</td>
<td>High Resolution Observations of Dense Gas and Dust in NGC 34</td>
<td>Xu</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>09:57:01</td>
<td>11:52:12</td>
<td>2016.2.00042.S</td>
<td>eso148-i_a_07_7M</td>
<td>The True Aspect of Gas-rich Merging Galaxies</td>
<td>Saito</td>
<td>EA</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>12:06:19</td>
<td>13:30:18</td>
<td>2015.1.00118.S</td>
<td>DG_Tauri_b_06_TE</td>
<td>Do more evolved T Tauri disks have magnetic fields like HL Tau?</td>
<td>Looney</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>13:30:27</td>
<td>14:42:05</td>
<td>2015.1.00118.S</td>
<td>DG_Tauri_b_06_TE</td>
<td>Do more evolved T Tauri disks have magnetic fields like HL Tau?</td>
<td>Looney</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>14:42:15</td>
<td>15:51:37</td>
<td>2015.1.00118.S</td>
<td>DG_Tauri_b_06_TE</td>
<td>Do more evolved T Tauri disks have magnetic fields like HL Tau?</td>
<td>Looney</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>15:12:57</td>
<td>17:15:47</td>
<td>2015.1.00393.S</td>
<td>Target_a_1_08_7M</td>
<td>CI observations toward compact molecular clouds associated with isolated intermediate- and high-mass YSOs in the LMC</td>
<td>Harada</td>
<td>EA</td>
<td>7-m</td>
<td>8</td>
</tr>
<tr>
<td>15:51:47</td>
<td>16:58:41</td>
<td>2015.1.00118.S</td>
<td>DG_Tauri_b_06_TE</td>
<td>Do more evolved T Tauri disks have magnetic fields like HL Tau?</td>
<td>Looney</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>17:17:30</td>
<td>18:24:56</td>
<td>2016.1.00954.S</td>
<td>B14-6566_a_06_TM1</td>
<td>Physics of the interstellar medium of galaxies in the reionization era: the [OIII]-[OII]-[CII] line ratio</td>
<td>Inoue</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>17:30:09</td>
<td>18:42:11</td>
<td>2016.2.00168.S</td>
<td>z_cma_a_06_7M</td>
<td>The Circumstellar Disk of a Vigorously Accreting FUor</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>----</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>01:12:48</td>
<td>02:42:29</td>
<td>2016.1.00053.S</td>
<td>G337.342_a_06_7M</td>
<td>Turbulence sets the initial conditions for star formation?</td>
<td>Rathborne</td>
<td>OTHER</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>01:24:21</td>
<td>01:32:36</td>
<td>TEST.1.00006.S</td>
<td>E2E5_singleSB_a_06_TM1</td>
<td>E2E5 Test project Multiple-SB SG and van Kampen Single-SB SG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01:36:05</td>
<td>03:02:20</td>
<td>2016.1.00243.S</td>
<td>the_20_k_a_06_TM1</td>
<td>Confirming Deeply Embedded Protostellar Population in the Central Molecular Zone</td>
<td>Zhang</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:42:46</td>
<td>03:54:36</td>
<td>2016.2.00088.S</td>
<td>OH26.5+0_a_07_7M</td>
<td>Measuring the CO envelope of OH26.5 : the CO photodissociation radius</td>
<td>Justtanont</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>03:02:43</td>
<td>04:33:57</td>
<td>2016.1.01200.S</td>
<td>G023.01-_a_07_TM1</td>
<td>Dissecting the magnetic-field morphology at 1000AU of an O-type YSO - Combining the VLBI and ALMA scales</td>
<td>Sanna</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>04:00:23</td>
<td>05:00:43</td>
<td>2016.2.00025.S</td>
<td>IRC+1036_a_07_7M</td>
<td>DEATH STAR: DEtermining Accurate mass-loss rates of THERmally pulsing AGB STARS</td>
<td>Ramstedt</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>04:34:08</td>
<td>05:34:29</td>
<td>2016.1.01200.S</td>
<td>G023.01-_a_07_TM1</td>
<td>Dissecting the magnetic-field morphology at 1000AU of an O-type YSO - Combining the VLBI and ALMA scales</td>
<td>Sanna</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>05:00:59</td>
<td>06:35:15</td>
<td>2016.1.01345.S</td>
<td>G23.33-0_a_06_7M</td>
<td>Investigating a Young, Extreme High-Mass Star-Forming Region</td>
<td>Sanhueza</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>05:34:41</td>
<td>06:51:55</td>
<td>2016.1.01200.S</td>
<td>G023.01-_a_07_TM1</td>
<td>Dissecting the magnetic-field morphology at 1000AU of an O-type YSO - Combining the VLBI and ALMA scales</td>
<td>Sanna</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>06:52:11</td>
<td>08:01:52</td>
<td>2016.1.00580.S</td>
<td>eADF22ti_c_06_TM1</td>
<td>Confusion-free Mapping of the Node within the Cosmic Web at z = 3</td>
<td>Umehata</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>06:55:25</td>
<td>08:50:38</td>
<td>2016.2.00042.S</td>
<td>eso148-i_a_07_7M</td>
<td>The True Aspect of Gas-rich Merging Galaxies</td>
<td>Saito</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>08:02:12</td>
<td>09:11:51</td>
<td>2016.1.00580.S</td>
<td>eADF22ti_c_06_TM1</td>
<td>Confusion-free Mapping of the Node within the Cosmic Web at z = 3</td>
<td>Umehata</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>08:50:56</td>
<td>10:46:38</td>
<td>2016.2.00042.S</td>
<td>eso148-i_a_07_7M</td>
<td>The True Aspect of Gas-rich Merging Galaxies</td>
<td>Saito</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>09:12:10</td>
<td>10:33:06</td>
<td>2016.1.01435.S</td>
<td>NGC_628_a_07_TM1</td>
<td>ALMA-LEGUS: Connecting Star Formation to its Fuel</td>
<td>Dale</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>10:33:26</td>
<td>11:28:23</td>
<td>2016.1.01079.S</td>
<td>scuba2-0_a_07_TM1</td>
<td>BASIC: A Bright ALMA Survey of SMGs in the Chandra Deep Field-South</td>
<td>Bauer</td>
<td>CL</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>10:46:49</td>
<td>11:48:08</td>
<td>2016.2.00055.S</td>
<td>NGC835_a_06_7M</td>
<td>An Unbiased Search for High Velocity Treister Winds in local (U)LIRGs using the 7m Array</td>
<td>Bauer</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>11:50:07</td>
<td>12:42:51</td>
<td>2016.2.00055.S</td>
<td>NGC838_a_06_7M</td>
<td>An Unbiased Search for High Velocity Treister Winds in local (U)LIRGs using the 7m Array</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>