2017-11-06

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>20:41:51</td>
<td>21:06:11</td>
<td>2017.1.00388.S</td>
<td>EX_Lup_a_04_TM1</td>
<td>Unveiling the Nature of the Hot Inner Disks around Accretion Outburst YSOs</td>
<td>Liu</td>
<td>EU</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>20:54:34</td>
<td>22:10:02</td>
<td>2017.1.00040.S</td>
<td>cnd_cs21_a_03_7M</td>
<td>Replenishing Molecular Gas Near the Hsieh Supermassive Black Hole SgrA*</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>22:57:39</td>
<td>00:27:14</td>
<td>2017.1.01045.S</td>
<td>BX610_a_04_TM1</td>
<td>Resolving molecular gas to 500 pc in Brisbin a unique star forming disk galaxy at z2</td>
<td>CL</td>
<td>12-m</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

2017-11-07

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:29:06</td>
<td>01:58:28</td>
<td>2017.1.01045.S</td>
<td>BX610_a_04_TM1</td>
<td>Resolving molecular gas to 500 pc in Brisbin a unique star forming disk galaxy at z2</td>
<td>CL</td>
<td>12-m</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>02:46:49</td>
<td>04:15:45</td>
<td>2017.1.01045.S</td>
<td>BX610_a_04_TM1</td>
<td>Resolving molecular gas to 500 pc in Brisbin a unique star forming disk galaxy at z2</td>
<td>CL</td>
<td>12-m</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>07:12:50</td>
<td>07:33:56</td>
<td>2017.1.00388.S</td>
<td>FU_Ori_a_04_TM1</td>
<td>Unveiling the Nature of the Hot Inner Disks around Accretion Outburst YSOs</td>
<td>Liu</td>
<td>EU</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>07:16:32</td>
<td>08:40:30</td>
<td>2017.1.00271.S</td>
<td>Ridge_NW_a_03_7M</td>
<td>Why is ~ 1/4 of the LMC's molecular gas not forming massive stars?</td>
<td>Indebetouw</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>07:35:05</td>
<td>09:02:20</td>
<td>2017.1.00388.S</td>
<td>V883_Ori_a_04_TM1</td>
<td>Unveiling the Nature of the Hot Inner Disks around Accretion Outburst YSOs</td>
<td>Liu</td>
<td>EU</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>08:41:19</td>
<td>10:08:31</td>
<td>2017.1.00886.L</td>
<td>NGC2903_c_06_7M</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>EU NA</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>09:24:19</td>
<td>10:24:00</td>
<td>2017.1.00027.S</td>
<td>G09v1.40_a_06_TM1</td>
<td>Unveiling the Galaxy Formation Sequence</td>
<td>Eales</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>10:08:40</td>
<td>11:35:30</td>
<td>2017.1.00886.L</td>
<td>NGC2903_c_06_7M</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>EU NA</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10:44:24</td>
<td>12:07:40</td>
<td>2016.1.00839.S</td>
<td>NGC_4569_a_06_TM1</td>
<td>WISDOM: supermassive black hole mass measurements for nearby spiral galaxies using molecular gas</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>13:49:34</td>
<td>14:09:21</td>
<td>2017.1.00388.S</td>
<td>EX_Lup_a_03_TM1</td>
<td>Unveiling the Nature of the Hot Inner Disks around Accretion Outburst YSOs</td>
<td>Liu</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>13:52:34</td>
<td>15:14:05</td>
<td>2017.1.01430.S</td>
<td>MACS1206_a_03_7M</td>
<td>Measuring the mass distribution with unprecedented accuracy in the CLASH cluster MACS1206</td>
<td>Etteri</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>14:21:15</td>
<td>15:45:06</td>
<td>2017.1.00042.S</td>
<td>ARP220_a_03_TM1</td>
<td>Arp 220 Nuclear Disks at 0.027-0.05'' Scoville Resolution</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>15:43:28</td>
<td>17:04:40</td>
<td>2017.1.00377.S</td>
<td>G337.92_-a_03_7M</td>
<td>Exploring the mid-IR SED of high-mass YSOs</td>
<td>Leurini</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>16:02:06</td>
<td>17:40:33</td>
<td>2017.1.01330.S</td>
<td>HT_Lup_b_03_TM1</td>
<td>Dust Trapping in the Substructures of Perez Protoplanetary Disks: A Pilot Program at 3 mm</td>
<td>CL</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>18:04:13</td>
<td>19:25:12</td>
<td>2017.1.00377.S</td>
<td>G337.92_+a_03_7M</td>
<td>Exploring the mid-IR SED of high-mass YSOs</td>
<td>Leurini</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>20:16:07</td>
<td>21:39:42</td>
<td>2017.1.00377.S</td>
<td>G08.68-0_a_03_7M</td>
<td>Exploring the mid-IR SED of high-mass YSOs</td>
<td>Leurini</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>20:23:14</td>
<td>22:02:34</td>
<td>2017.1.01330.S</td>
<td>HT_Lup_b_03_TM1</td>
<td>Dust Trapping in the Substructures of Perez Protoplanetary Disks: A Pilot Program at 3 mm</td>
<td>CL</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>21:42:22</td>
<td>23:00:55</td>
<td>2017.1.00377.S</td>
<td>G08.68-0_a_03_7M</td>
<td>Exploring the mid-IR SED of high-mass YSOs</td>
<td>Leurini</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>23:02:27</td>
<td>00:31:22</td>
<td>2017.1.00297.S</td>
<td>PG2209+1_a_06_7M</td>
<td>An ALMA-ACA Survey of CO(2-1) in PG QSOs</td>
<td>Bauer</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
</tbody>
</table>

2017-11-08

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:59:03</td>
<td>02:22:59</td>
<td>2017.1.00297.S</td>
<td>PG0003+1_a_06_7M</td>
<td>An ALMA-ACA Survey of CO(2-1) in PG QSOs</td>
<td>Bauer</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>02:24:52</td>
<td>03:46:25</td>
<td>2017.1.00161.L</td>
<td>ngec253_d_04_7M</td>
<td>ALCHEMI: the ALMA Comprehensive Martin High-resolution Extragalactic Molecular Inventory</td>
<td>EA EU NA</td>
<td>7-m</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Project Title

High-resolution Extragalactic Molecular Inventory

ALCHEMI: the ALMA Comprehensive Martin

Project Code

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:22:12</td>
<td>01:52:01</td>
<td>2017.1.01045.S BX610_a_04_TM1</td>
<td>Resolving molecular gas to 500 pc in a unique star forming disk galaxy at z2</td>
<td>Canning</td>
<td>NA</td>
<td>7-m</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>01:39:21</td>
<td>02:57:47</td>
<td>2017.1.00161.L ngc253_a_06_7M</td>
<td>ALCHEMI: the ALMA Comprehensive Martin</td>
<td>Martin</td>
<td>EU NA</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>02:28:14</td>
<td>04:20:57</td>
<td>2017.1.00191.S Mira_a_07_TM1</td>
<td>Studying the inner circumstellar envelope of AGB stars using ALMA and SPHERE</td>
<td>Khouri</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>03:09:29</td>
<td>04:59:24</td>
<td>2017.1.00161.L ngc253_m_07_7M</td>
<td>ALCHEMI: the ALMA Comprehensive Martin</td>
<td>Martin</td>
<td>EU NA</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>04:26:21</td>
<td>06:19:38</td>
<td>2017.1.00191.S R_Dor_a_07_TM1</td>
<td>Studying the inner circumstellar envelope of AGB stars using ALMA and SPHERE</td>
<td>Khouri</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>04:59:48</td>
<td>06:55:46</td>
<td>2017.1.01523.S L1451-we_a_07_7M</td>
<td>Catching a Low-Mass Core in the Act of Fragmenting</td>
<td>Storm</td>
<td>NA</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>06:55:57</td>
<td>08:39:34</td>
<td>2017.1.00786.S HR_1010_a_07_7M</td>
<td>Apocenter glow in the Gyr-old debris disk of HR 1010</td>
<td>Faramaz</td>
<td>CL</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>08:39:49</td>
<td>10:07:05</td>
<td>2017.1.00886.L NGC2903_c_06_7M</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Sakamoto</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10:23:30</td>
<td>12:00:16</td>
<td>2017.1.00737.S NGC3783_a_07_TM1</td>
<td>Disks, winds, and tori -- towards a comprehensive view of the AGN environment with VLTI and ALMA</td>
<td>Indebetouw</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>10:34:16</td>
<td>12:01:50</td>
<td>2017.1.00886.L NGC3059_a_06_7M</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Sakamoto</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>14:44:59</td>
<td>15:56:32</td>
<td>2016.1.00484.L HD_14266_a_06_TM1</td>
<td>Small-Scale Substructures in Protoplanetary Disks</td>
<td>Andrews</td>
<td>CL EU NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>14:53:21</td>
<td>16:03:39</td>
<td>2017.1.00886.L NGC4951_a_06_7M</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Sakamoto</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
2017-11-10

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:08:04</td>
<td>01:30:24</td>
<td>IRASF013_a_03_T1</td>
<td>12-m 3</td>
<td>High Resolution Survey of the Gas and Dust Distribution in Nearby Luminous Infrared Galaxies</td>
<td>Barcos-Munoz</td>
<td>NA</td>
<td>12-m 3</td>
<td>3</td>
</tr>
<tr>
<td>02:14:31</td>
<td>02:36:23</td>
<td>NGC253_a_07_T1</td>
<td>7-m 7</td>
<td>The Birth of Super Star Clusters at 0.5Bolatto Parsec Resolution</td>
<td>NA</td>
<td>12-m 7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>02:17:46</td>
<td>04:14:10</td>
<td>ngs253_p_07_T1</td>
<td>7-m 7</td>
<td>ALCHEMI: the ALMA Comprehensive Martin High-resolution Extragalactic Molecular Inventory</td>
<td>EA EU NA</td>
<td>NA</td>
<td>7-m 7</td>
<td>7</td>
</tr>
<tr>
<td>03:56:10</td>
<td>05:52:42</td>
<td>R_Dor_a_07_T1</td>
<td>7-m 7</td>
<td>Studying the inner circumstellar envelope of AGB stars using ALMA and SPHERE</td>
<td>Khouri</td>
<td>EU</td>
<td>12-m 7</td>
<td>7</td>
</tr>
<tr>
<td>04:14:19</td>
<td>06:17:29</td>
<td>ngs253_p_07_T1</td>
<td>7-m 7</td>
<td>ALCHEMI: the ALMA Comprehensive Martin High-resolution Extragalactic Molecular Inventory</td>
<td>EA EU NA</td>
<td>NA</td>
<td>7-m 7</td>
<td>7</td>
</tr>
<tr>
<td>05:55:42</td>
<td>07:44:36</td>
<td>MG0414+0_07_T1</td>
<td>7-m 7</td>
<td>Imaging the Molecular Gas Outflow from Gravitationally Lensed QSO MG 0414+0534 in 20 pc Resolution</td>
<td>Matsushita</td>
<td>EA</td>
<td>12-m 7</td>
<td>7</td>
</tr>
<tr>
<td>06:17:58</td>
<td>08:01:31</td>
<td>HR_1010_a_07_T1</td>
<td>7-m 7</td>
<td>Apocenter glow in the Gyr-old debris disk of HR 1010</td>
<td>Faramaz</td>
<td>CL</td>
<td>7-m 7</td>
<td>7</td>
</tr>
<tr>
<td>08:01:42</td>
<td>09:35:31</td>
<td>PG0923+1_a_06_T1</td>
<td>7-m 6</td>
<td>An ALMA-ACA Survey of CO(2-1) in PG QSOs</td>
<td>Bauer</td>
<td>CL</td>
<td>7-m 6</td>
<td>6</td>
</tr>
<tr>
<td>08:08:34</td>
<td>08:41:46</td>
<td>sn1987a_b_06_T1</td>
<td>12-m 6</td>
<td>SN1987A: an evolving treasure trove of physics</td>
<td>Indebetouw</td>
<td>NA</td>
<td>12-m 6</td>
<td>6</td>
</tr>
<tr>
<td>09:04:25</td>
<td>10:32:26</td>
<td>NGC3049_a_06_T1</td>
<td>12-m 6</td>
<td>Weighing Black Hole Masses in Low-Mass Galaxies</td>
<td>Nguyen</td>
<td>NA</td>
<td>12-m 6</td>
<td>6</td>
</tr>
<tr>
<td>09:50:00</td>
<td>11:17:22</td>
<td>NGC2903_c_06_T1</td>
<td>7-m 6</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>EU NA</td>
<td>NA</td>
<td>7-m 6</td>
<td>6</td>
</tr>
<tr>
<td>10:43:10</td>
<td>12:10:04</td>
<td>NGC_4696_a_06_T1</td>
<td>12-m 6</td>
<td>Fine tuning AGN feedback</td>
<td>Canning</td>
<td>NA</td>
<td>12-m 6</td>
<td>6</td>
</tr>
<tr>
<td>21:46:02</td>
<td>23:18:45</td>
<td>W43-MM2_a_06_T1</td>
<td>7-m 6</td>
<td>ALMA-IMF: ALMA transforms our view of the origin of stellar masses</td>
<td>Motte</td>
<td>CL EA EU NA</td>
<td>7-m 6</td>
<td>6</td>
</tr>
<tr>
<td>23:20:07</td>
<td>00:38:38</td>
<td>ngs253_d_06_T1</td>
<td>7-m 6</td>
<td>ALCHEMI: the ALMA Comprehensive Martin High-resolution Extragalactic Molecular Inventory</td>
<td>EA EU NA</td>
<td>NA</td>
<td>7-m 6</td>
<td>6</td>
</tr>
<tr>
<td>23:41:06</td>
<td>00:38:39</td>
<td>HELMS-45_a_06_T1</td>
<td>12-m 6</td>
<td>Unveiling the Galaxy Formation Sequence</td>
<td>Eales</td>
<td>EU</td>
<td>12-m 6</td>
<td>6</td>
</tr>
</tbody>
</table>

2017-11-11

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:03:37</td>
<td>02:35:09</td>
<td>GMC-8_a_06_T1</td>
<td>7-m 6</td>
<td>Revealing the roles of filamentary clouds in GMC evolution of M33</td>
<td>Muraoka</td>
<td>EA</td>
<td>7-m 6</td>
<td>6</td>
</tr>
<tr>
<td>01:14:39</td>
<td>02:27:00</td>
<td>HELMS-3_a_06_T1</td>
<td>12-m 6</td>
<td>Unveiling the Galaxy Formation Sequence</td>
<td>Eales</td>
<td>EU</td>
<td>12-m 6</td>
<td>6</td>
</tr>
</tbody>
</table>
2017-11-12

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:29:11</td>
<td>01:46:33</td>
<td>2017.1.0027.S</td>
<td>HELMS-8_a_06_TM1</td>
<td>Unveiling the Galaxy Formation Sequence</td>
<td>Eales</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:02:18</td>
<td>03:53:34</td>
<td>2017.1.0016.L</td>
<td>ngc253_o_07_7M</td>
<td>ALCHEMI: the ALMA Comprehensive Martin High-resolution Extragalactic Molecular Inventory</td>
<td>North</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:05:12</td>
<td>03:19:17</td>
<td>2017.1.00391.S</td>
<td>NGC0708_a_06_TM1</td>
<td>WISDOM: Extending black hole demographics across the mass-size plane with ALMA</td>
<td>Venmans</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>03:31:08</td>
<td>05:04:04</td>
<td>2017.1.01532.S</td>
<td>J0305-31_a_06_TM1</td>
<td>The chaotic formation of a massive galaxy at z=6.6</td>
<td>Aalto</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>04:49:28</td>
<td>06:32:55</td>
<td>2017.1.00786.S</td>
<td>HR_1010_a_06_7M</td>
<td>Apocenter glow in the Gyr-old debris disk of HR 1010</td>
<td>Pinilla</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>05:10:01</td>
<td>06:58:36</td>
<td>2017.1.00659.S</td>
<td>NGC1377_a_07_TM1</td>
<td>The Precessing Molecular Jet in the NGC1377 Nucleus: Outburst from an Accreting SMBH</td>
<td>Faramaz</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>07:04:01</td>
<td>08:33:55</td>
<td>2017.1.00492.S</td>
<td>mwc_758_a_07_TM1</td>
<td>DETECTING THE CIRCUMPLANETARY DISK AROUND THE SPIRAL-ARM-DRIVING PLANET IN A PROTOPLANETARY DISK</td>
<td>Indebetouw</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>07:52:04</td>
<td>09:15:56</td>
<td>2017.1.00297.S</td>
<td>PG0934+0_a_06_7M</td>
<td>An ALMA-ACA Survey of CO(2-1) in PG QSOs</td>
<td>Pinilla</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>08:35:49</td>
<td>10:08:45</td>
<td>2017.1.00789.S</td>
<td>sn1987a_b_06_TM1</td>
<td>SN1987A: an evolving treasure trove of physics</td>
<td>Meyer</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>12:29:36</td>
<td>13:39:58</td>
<td>2017.1.00886.L</td>
<td>NGC4951_a_06_TM1</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>North</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>12:30:04</td>
<td>12:58:03</td>
<td>2017.1.01071.S</td>
<td>Europa_d_06_TM1</td>
<td>Active geology on Europa: hot spots, plumes, and surface anomalies</td>
<td>Eales</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>12:58:34</td>
<td>14:06:49</td>
<td>2016.1.00800.S</td>
<td>ICB60_a_06_TM1</td>
<td>Finding a deeply buried, submm-opaque, AGN in the LIRG ICB60</td>
<td>Venmans</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>13:41:01</td>
<td>15:06:08</td>
<td>2017.1.00886.L</td>
<td>NGC4914_a_06_TM1</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Pinilla</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>15:17:54</td>
<td>16:45:13</td>
<td>2017.1.00815.S</td>
<td>NGC_4321_a_03_7M</td>
<td>A Wide, Deep Dense Gas Map of M100 to Connect Extragalactic and Galactic Dense Gas Results</td>
<td>Faramaz</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>16:45:26</td>
<td>17:53:11</td>
<td>2017.1.01355.L</td>
<td>G328.25_a_03_7M</td>
<td>ALMA IMF: ALMA transforms our view of the origin of stellar masses</td>
<td>Indebetouw</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>17:57:35</td>
<td>18:32:31</td>
<td>2017.1.01572.S</td>
<td>3C_346_a_03_TM1</td>
<td>ALMA Observations of Resolved Extragalactic Jets in a Critically Unsampled Spectral Window</td>
<td>Venmans</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>18:38:39</td>
<td>19:36:08</td>
<td>2017.1.00449.S</td>
<td>ry_lup_a_03_TM1</td>
<td>A disturbed transition disk: asymmetries and warps in RY Lup</td>
<td>Indebetouw</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>---</td>
<td>------------------</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>00:51:31</td>
<td>01:12:55</td>
<td>2017.1.01235.S</td>
<td>CGCG436--a_03_TM1</td>
<td>High Resolution Survey of the Gas and Dust Distribution in Nearby Luminous Infrared Galaxies</td>
<td>Barcos-Munoz</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>01:40:14</td>
<td>03:12:55</td>
<td>2017.1.01045.S</td>
<td>BX610_a_04_TM1</td>
<td>Resolving molecular gas to ~500 pc in a unique star forming disk galaxy at z=2</td>
<td>CL</td>
<td>12-m</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>01:46:41</td>
<td>03:13:21</td>
<td>2017.1.00129.S</td>
<td>NGC1316_a_03_7M</td>
<td>Deep CO(J=1-0) mapping survey of Fornax galaxies with a Mirga array</td>
<td>Morokuma</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>03:13:30</td>
<td>04:35:30</td>
<td>2017.1.00161.L</td>
<td>ngc253_g_04_7M</td>
<td>ALCHEMI: the ALMA Comprehensive High-resolution Extragalactic Molecular Inventory</td>
<td>Martin</td>
<td>EA EU NA</td>
<td>7-m</td>
<td>4</td>
</tr>
<tr>
<td>03:18:41</td>
<td>05:08:01</td>
<td>2017.1.00562.S</td>
<td>NB2315_a_03_TM1</td>
<td>Multi-band observations of starburst cores in massive galaxies at z=2.5</td>
<td>Tadaki</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>04:36:36</td>
<td>05:59:29</td>
<td>2017.1.00161.L</td>
<td>ngc253_e_04_7M</td>
<td>ALCHEMI: the ALMA Comprehensive High-resolution Extragalactic Molecular Inventory</td>
<td>Martin</td>
<td>EA EU NA</td>
<td>7-m</td>
<td>4</td>
</tr>
<tr>
<td>05:10:48</td>
<td>06:50:43</td>
<td>2017.1.00562.S</td>
<td>NB2315_a_03_TM1</td>
<td>Multi-band observations of starburst cores in massive galaxies at z=2.5</td>
<td>Tadaki</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>06:01:00</td>
<td>07:25:22</td>
<td>2017.1.00271.S</td>
<td>Ridge_NW_a_03_7M</td>
<td>Why is ~ 1/4 of the LMC's molecular gas not forming massive stars?</td>
<td>Indebetouw</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>06:59:40</td>
<td>08:06:39</td>
<td>2017.1.00509.S</td>
<td>L1527_a_03_TM1</td>
<td>Origin of the Doubly-Flared Disk Structure around the Class 0 Protostar L1527</td>
<td>Sakai</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>07:26:38</td>
<td>08:52:59</td>
<td>2017.1.00271.S</td>
<td>Ridge_NW_a_03_7M</td>
<td>Why is ~ 1/4 of the LMC's molecular gas not forming massive stars?</td>
<td>Indebetouw</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>08:08:02</td>
<td>09:20:29</td>
<td>2017.1.00300.S</td>
<td>AzTEC-1_b_03_TM1</td>
<td>A hybrid scenario for extreme starbursts in high-redshift SMGs</td>
<td>Tadaki</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>08:54:44</td>
<td>10:18:51</td>
<td>2017.1.00271.S</td>
<td>Ridge_NW_a_03_7M</td>
<td>Why is ~ 1/4 of the LMC's molecular gas not forming massive stars?</td>
<td>Indebetouw</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>09:24:06</td>
<td>10:36:29</td>
<td>2017.1.00300.S</td>
<td>AzTEC-1_b_03_TM1</td>
<td>A hybrid scenario for extreme starbursts in high-redshift SMGs</td>
<td>Tadaki</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>10:20:22</td>
<td>11:47:57</td>
<td>2017.1.00886.L</td>
<td>NGC2903_c_06_7M</td>
<td>100,000 Molecular Clouds Across the Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Schinnerer</td>
<td>EU NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>11:00:22</td>
<td>11:27:56</td>
<td>2017.1.01071.S</td>
<td>Europa_f_06_TM1</td>
<td>Active geology on Europa: hot spots, plumes, and surface anomalies</td>
<td>Brown</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
</tbody>
</table>