2018-01-22

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>21:36:36</td>
<td>22:46:25</td>
<td>2017.1.00270.S</td>
<td>ALPS.3_4_a_03_TM1</td>
<td>Dust vs. CO: Do both trace molecular gas emission in high-redshift galaxies?</td>
<td>Walter</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>22:46:42</td>
<td>23:34:26</td>
<td>2017.1.01301.S</td>
<td>PJ009-10_a_06_TM1</td>
<td>The structure of z+6 quasar host galaxies</td>
<td>Walter</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>22:53:55</td>
<td>00:16:48</td>
<td>2017.1.01644.S</td>
<td>GJ_191_a_06_7M</td>
<td>Searching for Kuiper-Belt analogues around the closest M-dwarf planetary systems</td>
<td>Amado</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
</tbody>
</table>

2018-01-23

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:01:35</td>
<td>01:13:03</td>
<td>2017.1.01107.S</td>
<td>FP_Tau_a_06_TM1</td>
<td>The chemistry of M dwarf protoplanetary disks</td>
<td>Oberg</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:13:13</td>
<td>02:24:16</td>
<td>2017.1.01659.S</td>
<td>EIS_J033_a_04_TM1</td>
<td>Resolved distribution and dynamics of Chemin molecular gas of a distant spiral galaxy</td>
<td>CL</td>
<td>12-m</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>01:26:07</td>
<td>02:58:59</td>
<td>2017.1.01644.S</td>
<td>GJ_273_a_06_7M</td>
<td>Searching for Kuiper-Belt analogues around the closest M-dwarf planetary systems</td>
<td>Amado</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>02:42:51</td>
<td>03:50:35</td>
<td>2017.1.00886.L</td>
<td>NGC1637_a_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>NA</td>
<td>12-m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02:42:51</td>
<td>03:50:35</td>
<td>2017.1.00886.L</td>
<td>NGC2566_a_06_TP</td>
<td>ALMA survey of lambda Orionis disks: understanding the influence of OB stars on planet formation</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>03:55:13</td>
<td>04:59:30</td>
<td>2017.1.00628.S</td>
<td>Geminga_a_07_TM1</td>
<td>Confiriming a Disc Around the Geminga Pulsar</td>
<td>CL</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>03:57:19</td>
<td>05:20:13</td>
<td>2017.1.00984.S</td>
<td>NGC1808_b_06_TP</td>
<td>Starburst-driven superwind in the nearby galaxy NGC 1808 traced by CI</td>
<td>Salak</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>03:58:33</td>
<td>05:19:18</td>
<td>2017.1.01053.S</td>
<td>CG_30_b_07_7M</td>
<td>SMORES: Shocked Molecular Outflows across a Range of Environments Survey</td>
<td>McGuire</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>05:01:29</td>
<td>06:31:01</td>
<td>2016.1.00311.S</td>
<td>TW_Hya_a_07_TM1</td>
<td>TW Hya as a Chemical Rosetta Stone Cleeves</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>05:20:50</td>
<td>06:28:24</td>
<td>2017.1.00886.L</td>
<td>NGC2566_a_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Salak</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>06:31:30</td>
<td>07:45:20</td>
<td>2017.1.00815.S</td>
<td>NGC_4321_a_03_TP</td>
<td>A Wide, Deep Dense Gas Map of M100 to Connect Extragalactic and Galactic Dense Gas Results</td>
<td>Gallager</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>06:37:27</td>
<td>08:27:36</td>
<td>2016.1.00173.S</td>
<td>TW_Hya_a_07_TM1</td>
<td>Polarimetric Imaging Observations of the Disk around TW Hya</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>08:02:49</td>
<td>09:36:19</td>
<td>2017.1.01162.S</td>
<td>Centauru_b_07_TP</td>
<td>A GMC Catalog for the Circumnuclear Espada Disk of Centaurus A</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>08:27:47</td>
<td>09:57:18</td>
<td>2016.1.00173.S</td>
<td>TW_Hya_a_07_TM1</td>
<td>Polarimetric Imaging Observations of the Disk around TW Hya</td>
<td>Salak</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>10:03:21</td>
<td>10:59:42</td>
<td>2016.1.01430.S</td>
<td>sgra_sta_c_07_TM1</td>
<td>Proper Motions of Gas in the Immediate Vicinity of the Galactic Supermassive Black Hole</td>
<td>Ho</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>12:29:28</td>
<td>13:58:01</td>
<td>2017.1.00661.S</td>
<td>NGC6334I_a_07_TM1</td>
<td>Testing predictions of stellar cluster formation in NGC6334I</td>
<td>Brogan</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>13:23:49</td>
<td>14:18:06</td>
<td>2016.1.00314.S</td>
<td>RCW120_b_07_7M</td>
<td>Dissecting to decipher: an ALMA study of the high-mass star formation processes in RCW 120</td>
<td>Bronfman</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table lists ALMA observing activities from 2018-01-22T17:59:00 to 2018-02-01T18:00, detailing project codes, SchedBlocks, project titles, PIs, executives, arrays, and bands.
13:58:10 15:00:20 2016.1.00268.S W51e2_a_07_TM1 Probing Inward Motion of Magnetized Gas in Massive Star Forming Region W51e2/e8: From 0.5 pc to 1500 AU Su EA 12-m 7
15:12:05 15:45:36 2017.1.00255.S ngc7130_a_06_TM1 Revealing the internal structure of molecular outflows: spatially resolved observations in local LIRGs Pereira Santaella EU 12-m 6
15:47:44 17:00:37 2017.1.00040.S cnd_cs54_c_06_TP Replenishing Molecular Gas Near the Supermassive Black Hole SgrA* Hsieh EU 12-m 6
16:07:44 15:45:36 2017.1.00255.S ngc7130_a_06_TM1 Revealing the internal structure of molecular outflows: spatially resolved observations in local LIRGs Pereira Santaella EU 12-m 6
16:52:12 17:58:57 2017.1.00629.S A2415_a_03_TM1 Constraining the cold accretion onto the most massive Black Holes Edge EU 12-m 3
18:11:19 19:14:02 2017.1.00629.S A2597_a_03_TM1 Constraining the cold accretion onto the most massive Black Holes Edge EU 12-m 3
18:58:20 20:31:30 2017.1.00931.S B1-2_SE_a_06_7M From Beginning to End -- Star Formation and Molecular Cloud Evolution in the Small Magellanic Cloud Johnson NA 7-m 6
21:47:57 22:58:01 2017.1.01163.S ALESS_06_a_03_TM1 ALESS CO: A CO survey of spectroscopically-confirmed, ALMA-identified SMGs Wardlow EU 12-m 3
23:08:07 02:09:51 2017.1.00271.S Ridge_so_b_03_TP Why is ~ 1/4 of the LMC's molecular gas not forming massive stars? Indebetouw NA Total Power 3

2018-01-24

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>02:03:12</td>
<td>03:36:02</td>
<td>2017.1.01644.S</td>
<td>GJ_273_a_06_7M</td>
<td>Searching for Kuiper-Belt analogues around the closest M-dwarf planetary systems</td>
<td>Amado</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>02:09:51</td>
<td>03:15:14</td>
<td>2017.1.00271.S</td>
<td>Ridge_so_b_03_TP</td>
<td>Why is ~ 1/4 of the LMC's molecular gas not forming massive stars?</td>
<td>Indebetouw</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>02:52:30</td>
<td>04:01:52</td>
<td>2017.1.00466.S</td>
<td>HD_24518_a_06_TM1</td>
<td>ALMA survey of lambda Orionis disks: understanding the influence of OB stars on planet formation</td>
<td>Ansdell</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>03:47:02</td>
<td>05:08:26</td>
<td>2017.1.01053.S</td>
<td>CG_30_c_07_7M</td>
<td>SMORES: Shocked Molecular Outflows across a Range of Environments Survey</td>
<td>McGuire</td>
<td>NA</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>04:03:20</td>
<td>05:19:52</td>
<td>2017.1.00379.S</td>
<td>ngc_3256_a_06_TM1</td>
<td>Physical properties of dense gas in an Harada AGN-driven outflow</td>
<td>Harada</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
</tbody>
</table>
4:18:26
04:18:26
2017.1.00271.S
Ridge_so_b_03_TP
Why is ~ 1/4 of the LMC's molecular gas not forming massive stars?
Indebetouw
NA
Total Power
3

04:18:26
04:58:26
2017.1.01158.S
VV75_a_06_TP
ACA Study on the Driving Mechanisms of Starburst and Main-Sequence Star Formation in Local Galaxies
Yamashita
EA
Total Power
6

05:08:39
05:58:34
2017.1.00379.S
ngc_3256_a_06_7M
Physical properties of dense gas in an AGN-driven outflow
Oberg
NA
12-m
6

07:00:18
07:57:29
2017.1.01107.S
2MASS_J1_a_06_TM1
The chemistry of M dwarf protoplanetary disks
Hughes
NA
12-m
6

08:02:40
09:14:20
2017.1.00979.S
HD_10690_a_06_TM1
Disk eccentricity and circumplanetary dust in the HD 106906 system
Vayner
NA
12-m
4

09:27:10
10:31:08
2017.1.01527.S
7C_1354+_a_04_TM1
Searching for feedback with 3D multi-phase interstellar medium study in z~2 quasar host galaxies
NA

10:36:26
10:54:21
2017.1.00773.S
JIN_DS_a_04_TM1
Snapshots of 6 Ultra-Red z > 6 SCUBA-2 sources from the JINGLE survey
Greenslade
EU
12-m
4

11:00:00
12:10:56
2017.1.01232.S
Cloverle_b_03_TM1
Spectral line survey in the rest-frame 350 GHz band toward the Cloverleaf quasar
Nishimura
EA
12-m
3

12:21:18
13:32:09
2017.1.01232.S
Cloverle_b_03_TM1
Spectral line survey in the rest-frame 350 GHz band toward the Cloverleaf quasar
Nishimura
EA
12-m
3

13:39:22
14:47:11
2017.1.01232.S
Cloverle_b_03_TM1
Spectral line survey in the rest-frame 350 GHz band toward the Cloverleaf quasar
Nishimura
EA
12-m
3

13:52:18
15:14:15
2017.1.01355.L
W43-MM1_a_03_7M
ALMA-IMF: ALMA transforms our view of the origin of stellar masses
Motte
CL EA EU NA
7-m
3

13:52:31
15:26:47
2017.1.01355.L
W43-MM3_a_03_TP
ALMA-IMF: ALMA transforms our view of the origin of stellar masses
Motte
CL EA EU NA
Total Power
3

14:59:06
15:44:43
2017.1.00441.S
W1603+27_a_03_TM1
Exploring gas-rich major mergers in WISE-selected, hot dust-obscured galaxies
Fan
OTHER
12-m
3

15:14:27
16:18:21
2017.1.01355.L
W43-MM1_a_03_7M
ALMA-IMF: ALMA transforms our view of the origin of stellar masses
Motte
CL EA EU NA
7-m
3

15:27:05
16:18:23
2017.1.01355.L
W51-E_a_03_TP
ALMA-IMF: ALMA transforms our view of the origin of stellar masses
Motte
CL EA EU NA
Total Power
3

23:40:20
00:16:29
2017.1.01644.S
GJ_191_a_06_7M
Searching for Kuiper-Belt analogues around the closest M-dwarf planetary systems
Amado
EU
7-m
6

23:46:59
00:06:44
2017.1.00698.S
Sirius_A_a_03_TM1
Measuring the Emission of Stellar Atmospheres at Submillimeter/Millimeter Wavelengths
White
NA
12-m
3

2018-01-25

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:06:54</td>
<td>01:15:47</td>
<td>2017.1.01163.S</td>
<td>ALESS_06_a_03_TM1</td>
<td>ALESS CO: A CO survey of spectroscopically-confirmed, ALMA-identified SMGs</td>
<td>Wardlow</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>01:33:57</td>
<td>02:41:23</td>
<td>2017.1.01163.S</td>
<td>ALESS_06_a_03_TM1</td>
<td>ALESS CO: A CO survey of spectroscopically-confirmed, ALMA-identified SMGs</td>
<td>Wardlow</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>02:41:33</td>
<td>03:51:33</td>
<td>2017.1.00719.S</td>
<td>GLEAM_J0_a_03_TM1</td>
<td>The GLEAMing of the first supermassive balck holes in the Universe</td>
<td>Drouart</td>
<td>OTHER</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>02:42:21</td>
<td>04:05:02</td>
<td>2017.1.01644.S</td>
<td>GJ_191_a_06_7M</td>
<td>Searching for Kuiper-Belt analogues around the closest M-dwarf planetary systems</td>
<td>Amado</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>02:44:00</td>
<td>03:48:50</td>
<td>2017.1.00271.S</td>
<td>Ridge_so_b_03_TP</td>
<td>Why is ~ 1/4 of the LMC's molecular gas not forming massive stars?</td>
<td>Indebetouw</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>03:50:53</td>
<td>04:56:00</td>
<td>2017.1.00271.S</td>
<td>Ridge_so_b_03_TP</td>
<td>Why is ~ 1/4 of the LMC's molecular gas not forming massive stars?</td>
<td>Indebetouw</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>04:11:56</td>
<td>05:22:33</td>
<td>2017.1.00719.S</td>
<td>GLEAM_J0_b_03_TM1</td>
<td>The GLEAMing of the first supermassive balck holes in the Universe</td>
<td>Drouart</td>
<td>OTHER</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>04:18:26</td>
<td>05:46:26</td>
<td>2017.1.01644.S</td>
<td>GJ_273_a_06_7M</td>
<td>Searching for Kuiper-Belt analogues around the closest M-dwarf planetary systems</td>
<td>Amado</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>Time</td>
<td>Duration</td>
<td>Code</td>
<td>Title</td>
<td>Authors</td>
<td>Inst</td>
<td>Mode</td>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---</td>
<td>--------------------------------------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>00:00</td>
<td>00:15</td>
<td>VV75_a_06_TP</td>
<td>ACA Study on the Driving Mechanisms of Starburst and Main-Sequence Star Formation in Local Galaxies</td>
<td>Yamashita</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>00:30</td>
<td>00:30</td>
<td>GLEAM_J0_e_03_TM1</td>
<td>The GLEAMing of the first supermassive balck holes in the Universe</td>
<td>Drouart</td>
<td>OTHER</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>00:45</td>
<td>00:45</td>
<td>ngc_3256_a_06_7M</td>
<td>Physical properties of dense gas in an AGN-driven outflow</td>
<td>Harada</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>01:15</td>
<td>01:15</td>
<td>NGC_4321_a_03_TP</td>
<td>A Wide, Deep Dense Gas Map of M100 to Connect Extragalactic and Galactic Dense Gas Results</td>
<td>Gallagher</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>01:50</td>
<td>01:50</td>
<td>TW_Hya_a_03_TM1</td>
<td>Confirmation and structure of HCOOH towards the TW Hydrae protoplanetary disk</td>
<td>Favre</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>02:30</td>
<td>02:30</td>
<td>NGC_4321_a_03_7M</td>
<td>A Wide, Deep Dense Gas Map of M100 to Connect Extragalactic and Galactic Dense Gas Results</td>
<td>Gallagher</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>03:15</td>
<td>03:15</td>
<td>NGC_4321_a_03_TP</td>
<td>A Wide, Deep Dense Gas Map of M100 to Connect Extragalactic and Galactic Dense Gas Results</td>
<td>Gallagher</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>03:50</td>
<td>03:50</td>
<td>TW_Hya_a_03_TM1</td>
<td>Confirmation and structure of HCOOH towards the TW Hydrae protoplanetary disk</td>
<td>Favre</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>04:30</td>
<td>04:30</td>
<td>NGC_4321_a_03_7M</td>
<td>A Wide, Deep Dense Gas Map of M100 to Connect Extragalactic and Galactic Dense Gas Results</td>
<td>Gallagher</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>05:15</td>
<td>05:15</td>
<td>NGC_4321_a_03_TP</td>
<td>A Wide, Deep Dense Gas Map of M100 to Connect Extragalactic and Galactic Dense Gas Results</td>
<td>Gallagher</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>05:50</td>
<td>05:50</td>
<td>Cloverle_b_03_TM1</td>
<td>Spectral line survey in the rest-frame 350 GHz band toward the Cloverleaf quasar</td>
<td>Nishimura</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>06:30</td>
<td>06:30</td>
<td>NGC_4321_a_03_TP</td>
<td>A Wide, Deep Dense Gas Map of M100 to Connect Extragalactic and Galactic Dense Gas Results</td>
<td>Gallagher</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>07:15</td>
<td>07:15</td>
<td>PJ144653_a_03_TM1</td>
<td>ALMA Study of the Hyperluminous SMGs Identified from Planck All-Sky Survey</td>
<td>Yun</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>07:50</td>
<td>07:50</td>
<td>NGC_4321_a_03_7M</td>
<td>A Wide, Deep Dense Gas Map of M100 to Connect Extragalactic and Galactic Dense Gas Results</td>
<td>Gallagher</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>08:30</td>
<td>08:30</td>
<td>UGC 9618_a_03_TM1</td>
<td>High Resolution Survey of the Gas and Dust Distribution in Nearby Luminous Infrared Galaxies</td>
<td>Barcos-Munoz</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>09:15</td>
<td>09:15</td>
<td>G328.25_a_03_TP</td>
<td>ALMA-IMF: ALMA transforms our view of the origin of stellar masses</td>
<td>Motte</td>
<td>CL EA EU NA</td>
<td>Total Power</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>09:45</td>
<td>09:45</td>
<td>PJ144958_a_03_TM1</td>
<td>ALMA Study of the Hyperluminous SMGs Identified from Planck All-Sky Survey</td>
<td>Yun</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10:20</td>
<td>10:20</td>
<td>NGC_4321_a_03_7M</td>
<td>A Wide, Deep Dense Gas Map of M100 to Connect Extragalactic and Galactic Dense Gas Results</td>
<td>Gallagher</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10:55</td>
<td>10:55</td>
<td>PJ144653_a_03_TM1</td>
<td>ALMA Study of the Hyperluminous SMGs Identified from Planck All-Sky Survey</td>
<td>Yun</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td>11:30</td>
<td>SN2016ar_a_03_TM1</td>
<td>A Direct Test of the Possible Connection Between Fast Radio Bursts and Superluminous Supernovae</td>
<td>Berger</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>12:05</td>
<td>12:05</td>
<td>G328.25_a_03_TP</td>
<td>ALMA-IMF: ALMA transforms our view of the origin of stellar masses</td>
<td>Motte</td>
<td>CL EA EU NA</td>
<td>Total Power</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>12:30</td>
<td>G33.738_a_03_7M</td>
<td>High Resolution Imaging of Inflow & Infall in Massive Star-forming Clumps</td>
<td>Shirley</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>13:05</td>
<td>13:05</td>
<td>G33.738_a_03_TM1</td>
<td>Cores on the cusp of star formation</td>
<td>Friesen</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>13:30</td>
<td>13:30</td>
<td>G33.738_a_03_TP</td>
<td>ALMA-IMF: ALMA transforms our view of the origin of stellar masses</td>
<td>Motte</td>
<td>CL EA EU NA</td>
<td>Total Power</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>14:05</td>
<td>14:05</td>
<td>gy92_274_a_03_TM1</td>
<td>Channelling Phosphorus into Planets: Greaves Towards Habitability</td>
<td>UE</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>14:30</td>
<td>14:30</td>
<td>NGC6868_a_03_TM1</td>
<td>Constraining the cold accretion onto the most massive Black Holes</td>
<td>Edge</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>15:05</td>
<td>15:05</td>
<td>G33.738_a_03_TM1</td>
<td>High Resolution Imaging of Inflow & Infall in Massive Star-forming Clumps</td>
<td>Shirley</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>15:30</td>
<td>15:30</td>
<td>W43-MM3_a_03_TP</td>
<td>ALMA-IMF: ALMA transforms our view of the origin of stellar masses</td>
<td>Motte</td>
<td>CL EA EU NA</td>
<td>Total Power</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
view of the origin of stellar masses

2018-01-26

Start (UT) End (UT) Project Code SchedBlock Project Title PI Executive Array Band

00:18:47 01:30:15 2017.1.01163.S ALESS_01_a_03_TM1 ALESS CO: A CO survey of spectroscopically-confirmed, ALMA-identified SMGs Wardlow EU 12-m 3
01:48:24 02:59:25 2017.1.01163.S ALESS_01_a_03_TM1 ALESS CO: A CO survey of spectroscopically-confirmed, ALMA-identified SMGs Wardlow EU 12-m 3
01:49:13 02:54:24 2017.1.00271.S Ridge_so_b_03_TP Why is ~ 1/4 of the LMC's molecular gas not forming massive stars? Indebetouw NA Total Power 3
02:59:32 04:10:11 2017.1.00719.S GLEAM_J0_c_03_TM1 The GLEAMing of the first supermassive balck holes in the Universe Drouart OTHER 12-m 3
04:00:13 04:35:29 2017.1.00271.S Ridge_so_b_03_TP Why is ~ 1/4 of the LMC's molecular gas not forming massive stars? Indebetouw NA Total Power 3
04:10:22 05:22:37 2017.1.00719.S GLEAM_J0_d_03_TM1 The GLEAMing of the first supermassive balck holes in the Universe Drouart OTHER 12-m 3
05:24:04 06:31:38 2017.1.01587.S TW_Hya_a_03_TM1 Confirmation and structure of HCOOH towards the TW Hydrae protoplanetary disk EU 12-m 3
05:48:51 07:01:44 2017.1.00815.S NGC_4321_a_03_TP A Wide, Deep Dense Gas Map of M100 to Connect Extragalactic and Galactic Dense Gas Results Gallagher NA Total Power 3
06:03:59 07:27:24 2017.1.00815.S NGC_4321_a_03_7M A Wide, Deep Dense Gas Map of M100 to Connect Extragalactic and Galactic Dense Gas Results Gallagher NA 7-m 3
06:31:47 07:39:25 2017.1.01587.S TW_Hya_a_03_TM1 Confirmation and structure of HCOOH towards the TW Hydrae protoplanetary disk EU 12-m 3
SchedBlock

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:01:58</td>
<td>08:16:13</td>
<td>2017.1.00815.S</td>
<td>NGC_4321_a_03_TP</td>
<td>A Wide, Deep Dense Gas Map of M100 to Connect Extragalactic and Galactic Dense Gas Results</td>
<td>Gallagher NA</td>
<td>Total Power 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:27:31</td>
<td>08:11:43</td>
<td>2017.1.00815.S</td>
<td>NGC_4321_a_03_7M</td>
<td>A Wide, Deep Dense Gas Map of M100 to Connect Extragalactic and Galactic Dense Gas Results</td>
<td>Gallagher NA</td>
<td>7-m 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:15:34</td>
<td>09:39:01</td>
<td>2017.1.00815.S</td>
<td>NGC_4321_a_03_7M</td>
<td>A Wide, Deep Dense Gas Map of M100 to Connect Extragalactic and Galactic Dense Gas Results</td>
<td>Gallagher NA</td>
<td>7-m 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:19:58</td>
<td>08:55:36</td>
<td>2017.1.00280.S</td>
<td>SN2013dg_a_03_TM1</td>
<td>A Direct Test of the Possible Connection Between Fast Radio Bursts and Superluminous Supernovae</td>
<td>Berger NA</td>
<td>12-m 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:20:50</td>
<td>09:34:00</td>
<td>2017.1.00815.S</td>
<td>NGC_4321_a_03_TP</td>
<td>A Wide, Deep Dense Gas Map of M100 to Connect Extragalactic and Galactic Dense Gas Results</td>
<td>Gallagher NA</td>
<td>Total Power 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:55:46</td>
<td>09:40:11</td>
<td>2017.1.01214.S</td>
<td>PJ132934_a_03_TM1</td>
<td>ALMA Study of the Hyperluminous SMGs Identified from Planck All-Sky Survey</td>
<td>Yun NA</td>
<td>12-m 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:34:12</td>
<td>10:59:22</td>
<td>2017.1.01355.L</td>
<td>G333.60_a_03_TP</td>
<td>ALMA-IMF: ALMA transforms our view of the origin of stellar masses</td>
<td>Motte CL EA EU NA</td>
<td>Total Power 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:39:11</td>
<td>11:04:10</td>
<td>2017.1.00079.S</td>
<td>M83_b_03_7M</td>
<td>Mapping Molecular ISM in the Whole Disk of M83</td>
<td>Koda NA</td>
<td>7-m 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:40:17</td>
<td>10:43:30</td>
<td>2017.1.00510.S</td>
<td>UR56917_a_03_TM1</td>
<td>The ISM of the most luminous starbursts in the early Universe</td>
<td>Oteo EU</td>
<td>12-m 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:54:38</td>
<td>11:57:54</td>
<td>2017.1.00510.S</td>
<td>UR56917_a_03_TM1</td>
<td>The ISM of the most luminous starbursts in the early Universe</td>
<td>Oteo EU</td>
<td>12-m 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:04:51</td>
<td>12:03:51</td>
<td>2017.1.01380.S</td>
<td>Oph-D_a_03_7M</td>
<td>Are dense cores formed through shocks? An observational test in Ophiuchus</td>
<td>Pineda EU</td>
<td>7-m 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:43:06</td>
<td>21:54:24</td>
<td>2017.1.01163.S</td>
<td>ALESS_01_a_03_TM1</td>
<td>ALESS CO: A CO survey of spectroscopically-confirmed, ALMA-identified SMGs</td>
<td>Wardlow EU</td>
<td>12-m 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2018-01-27

Start (UT) End (UT) Project Code SchedBlock Project Title PI Executive Array Band

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:51:07</td>
<td>13:53:50</td>
<td>2017.1.00501.S</td>
<td>G31.41+0_b_03_TM1</td>
<td>GUAPOS: G31.41+0.31 Unbiased ALMA sPectral Observational Survey</td>
<td>Beltran EU</td>
<td>12-m 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:53:59</td>
<td>15:03:17</td>
<td>2017.1.00224.S</td>
<td>ex_lup_a_03_TM1</td>
<td>Chemical evolution in the prototype young eruptive star EX Lup one decade after the outburst</td>
<td>Kospal EU</td>
<td>12-m 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:04:00</td>
<td>16:15:24</td>
<td>2017.1.00224.S</td>
<td>ex_lup_a_03_TM1</td>
<td>Chemical evolution in the prototype young eruptive star EX Lup one decade after the outburst</td>
<td>Kospal EU</td>
<td>12-m 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:30:37</td>
<td>22:02:38</td>
<td>2017.1.00931.S</td>
<td>B1-2_SE_a_06_7M</td>
<td>From Beginning to End -- Star Formation and Molecular Cloud Evolution in the Small Magellanic Cloud</td>
<td>Johnson NA</td>
<td>7-m 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21:29:53</td>
<td>22:36:03</td>
<td>2017.1.00270.S</td>
<td>ALPS.1_a_03_TM1</td>
<td>Dust vs. CO: Do both trace molecular gas emission in high-redshift galaxies?</td>
<td>Walter EU</td>
<td>12-m 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:49:05</td>
<td>23:55:35</td>
<td>2017.1.00270.S</td>
<td>ALPS.1_a_03_TM1</td>
<td>Dust vs. CO: Do both trace</td>
<td>Walter EU</td>
<td>12-m 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>----</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>23:01:04</td>
<td>00:15:51</td>
<td>2017.1.01363.S</td>
<td>30_Dor_C_b_03_TP</td>
<td>Revealing the Shock-interacting Molecular Gas toward the Magellanic Superbubble 30 Doradus C</td>
<td>Yamane</td>
<td>EA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>23:55:54</td>
<td>01:09:02</td>
<td>2017.1.01163.S</td>
<td>ALESS_01_a_03_TM1</td>
<td>ALESS CO: A CO survey of spectroscopically-confirmed, ALMA-identified SMGs</td>
<td>Wardlow</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
</tbody>
</table>

2018-01-28

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:15:58</td>
<td>01:30:52</td>
<td>2017.1.01363.S</td>
<td>30_Dor_C_b_03_TP</td>
<td>Revealing the Shock-interacting Molecular Gas toward the Magellanic Superbubble 30 Doradus C</td>
<td>Yamane</td>
<td>EA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>01:09:10</td>
<td>02:21:06</td>
<td>2017.1.01163.S</td>
<td>ALESS_00_a_03_TM1</td>
<td>ALESS CO: A CO survey of spectroscopically-confirmed, ALMA-identified SMGs</td>
<td>Wardlow</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>01:51:07</td>
<td>02:56:14</td>
<td>2017.1.00271.S</td>
<td>Ridge_so_b_03_TP</td>
<td>Why is ~ 1/4 of the LMC's molecular gas not forming massive stars?</td>
<td>Indebetouw</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>02:40:33</td>
<td>03:43:22</td>
<td>2017.1.01177.S</td>
<td>PKS0834+-a_04_TM1</td>
<td>Connecting the CO and neutral hydrogen gas in DLA host galaxies at z=0.45 and z=0.59</td>
<td>Sadler</td>
<td>OTHER</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>02:57:59</td>
<td>04:03:25</td>
<td>2017.1.00271.S</td>
<td>Ridge_so_b_03_TP</td>
<td>Why is ~ 1/4 of the LMC's molecular gas not forming massive stars?</td>
<td>Indebetouw</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>03:43:33</td>
<td>04:30:46</td>
<td>2017.1.01368.S</td>
<td>HS_0810+_a_03_TM1</td>
<td>MAGNIFIED VIEWS OF THE MOLECULAR GAS OF THE z=1.51 LENSED AGN HS 0810+2554</td>
<td>Chartas</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>04:04:35</td>
<td>05:10:00</td>
<td>2017.1.00271.S</td>
<td>Ridge_so_b_03_TP</td>
<td>Why is ~ 1/4 of the LMC's molecular gas not forming massive stars?</td>
<td>Indebetouw</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>04:49:43</td>
<td>05:53:01</td>
<td>2017.1.01177.S</td>
<td>PKS0834+-a_04_TM1</td>
<td>Connecting the CO and neutral hydrogen gas in DLA host galaxies at z=0.45 and z=0.59</td>
<td>Sadler</td>
<td>OTHER</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>10:16:49</td>
<td>11:43:02</td>
<td>2017.1.01355.L</td>
<td>G333.60_a_03_TP</td>
<td>ALMA-IMF: ALMA transforms our view of the origin of stellar masses</td>
<td>Motte</td>
<td>CL EA EU NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>10:17:07</td>
<td>11:35:45</td>
<td>2017.1.01380.S</td>
<td>Oph-I-MM_a_03_7M</td>
<td>Are dense cores formed through shocks? An observational test in Ophiuchus</td>
<td>Pineda</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>10:19:39</td>
<td>10:58:24</td>
<td>2017.1.00280.S</td>
<td>SN2011kf_a_03_TM1</td>
<td>A Direct Test of the Possible Connection Between Fast Radio Bursts and Superluminous Supernovae</td>
<td>Berger</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>11:09:46</td>
<td>11:40:56</td>
<td>2017.1.00441.S</td>
<td>W1248-21_a_03_TM1</td>
<td>Exploring gas-rich major mergers in WISE-selected, hot dust-obscured galaxies</td>
<td>Fan</td>
<td>OTHER</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>12:04:37</td>
<td>12:44:10</td>
<td>2017.1.01077.S</td>
<td>ad3a-234_a_03_TM1</td>
<td>Bulge Asymmetries and Dynamical Evolution (BAaDE) III</td>
<td>Sjouwerman</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>12:45:25</td>
<td>13:28:25</td>
<td>2017.1.01077.S</td>
<td>ad3a-257_b_03_TM1</td>
<td>Bulge Asymmetries and Dynamical Evolution (BAaDE) III</td>
<td>Sjouwerman</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>14:20:29</td>
<td>15:43:34</td>
<td>2017.1.01380.S</td>
<td>Oph-I-MM_a_03_7M</td>
<td>Are dense cores formed through shocks? An observational test in Ophiuchus</td>
<td>Pineda</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>14:43:12</td>
<td>15:45:08</td>
<td>2017.1.01006.S</td>
<td>Oph_A-N6_a_03_TM1</td>
<td>Cores on the cusp of star formation</td>
<td>Friesen</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>15:46:10</td>
<td>16:52:19</td>
<td>2017.1.01077.S</td>
<td>ad3a-257_a_03_TM1</td>
<td>Bulge Asymmetries and Dynamical Evolution (BAaDE) III</td>
<td>Sjouwerman</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>16:36:02</td>
<td>18:01:16</td>
<td>2017.1.01704.S</td>
<td>B28539_a_03_7M</td>
<td>A systematic survey of dense gas kinematics and filamentary flows</td>
<td>Svoboda</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
</tbody>
</table>
in massive quiescent clumps

ALMA-IMF: ALMA transforms our view of the origin of stellar masses

Hughes

ALMA-IMF: ALMA transforms our view of the origin of stellar masses

Hughes

ALMA-IMF: ALMA transforms our view of the origin of stellar masses

Hughes

ALESS CO: A CO survey of spectroscopically-confirmed, ALMA-identified SMGs

ALESS CO: A CO survey of spectroscopically-confirmed, ALMA-identified SMGs

ALESS CO: A CO survey of spectroscopically-confirmed, ALMA-identified SMGs

WARDLOW