2018-06-18

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>23:42:21</td>
<td>00:34:18</td>
<td>2017.1.00886.L</td>
<td>NGC4654_a_06_TM1</td>
<td>100,000 Molecular Clouds Across the Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Schinnerer EU NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

2018-06-19

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>02:25:03</td>
<td>03:34:33</td>
<td>2017.1.00886.L</td>
<td>NGC5643_a_06_TP</td>
<td>100,000 Molecular Clouds Across the Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Schinnerer EU NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

2018-06-20

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
</table>

2018-06-21

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:25:46</td>
<td>01:35:42</td>
<td>2017.1.00886.L</td>
<td>NGC5643_a_06_TP</td>
<td>100,000 Molecular Clouds Across the Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Schinnerer EU NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Effects of active galactic nucleus

Takano

EA

7-m

8

The role of molecular gas in quenching star formation of green valley galaxies

Lin

EA

12-m

3

A survey of prestellar, high-mass clump candidates: constraining models of high-mass star formation

Sanhueza

EA

12-m

6

A survey of prestellar, high-mass clump candidates: constraining models of high-mass star formation

Sanhueza

EA

Total Power

6

What sets CO excitation in clumpy, turbulent disk galaxies?

Fisher

OTHER

12-m

8

The role of molecular gas in quenching star formation of green valley galaxies

Lin

EA

12-m

3

A survey of prestellar, high-mass clump candidates: constraining models of high-mass star formation

Sanhueza

EA

Total Power

6

What sets CO excitation in clumpy, turbulent disk galaxies?

Fisher

OTHER

12-m

8

The role of molecular gas in quenching star formation of green valley galaxies

Lin

EA

12-m

3

A survey of prestellar, high-mass clump candidates: constraining models of high-mass star formation

Sanhueza

EA

Total Power

6

What sets CO excitation in clumpy, turbulent disk galaxies?

Fisher

OTHER

12-m

8

The role of molecular gas in quenching star formation of green valley galaxies

Lin

EA

12-m

3
13:00:43 14:23:48 2017.1.00941.S 49_Ceti_b_07_TM1 Measuring the Chemical Composition Hughes of Molecular Gas in the Debris Disk around 49 Ceti NA 12-m 7
14:08:49 15:25:55 2017.1.00886.L NGC1097_d_06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution EU NA Total Power 6
15:09:20 17:03:07 2017.1.01280.S Orion_Ba_a_08_7M The complete ALMA view of the Orion Goicoechea Bar: unexpected structures and processes EU 7-m 8
15:36:25 16:52:46 2017.1.00886.L NGC1097_d_06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution EU NA Total Power 6
16:52:53 18:11:39 2017.1.00886.L NGC1792_a_06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution EU NA Total Power 6
17:51:59 19:41:54 2017.1.01280.S Orion_Ba_a_07_7M The complete ALMA view of the Orion Goicoechea Bar: unexpected structures and processes EU 7-m 7
18:08:08 18:50:03 2017.1.00239.S G08-5_a_07_TM1 What sets CO excitation in clumpy, turbulent disk galaxies? Fisher OTHER 12-m 7
18:21:21 19:35:12 2017.1.00886.L NGC2903_f_06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution EU NA Total Power 6
18:50:50 20:00:11 2017.1.00428.L DEIMOS_C_as_07_TM1 ALPINE: The ALMA Large Program to Le Fèvre Investigate CII at Early times CL EA EU NA 12-m 7
19:51:11 21:04:37 2017.1.00886.L NGC2903_f_06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution EU NA Total Power 6
20:22:09 21:31:03 2016.1.00972.S NGC_3351_a_07_TM1 Revealing the Cause of "Starburst"-like Conversion Factors in Nearby Galaxy Centers Sandstrom NA 12-m 7
21:06:57 22:23:56 2017.1.00886.L NGC4298_b_06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution EU NA Total Power 6
21:38:54 22:48:07 2016.1.00972.S NGC_3351_a_07_TM1 Revealing the Cause of "Starburst"-like Conversion Factors in Nearby Galaxy Centers Sandstrom NA 12-m 7
22:37:45 23:54:43 2017.1.00886.L NGC4298_b_06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution EU NA Total Power 6
23:07:16 00:28:06 2016.1.00972.S NGC_4321_a_07_TM1 Revealing the Cause of "Starburst"-like Conversion Factors in Nearby Galaxy Centers Sandstrom NA 12-m 7
23:19:21 00:55:22 2017.1.00595.S tet_Aps_a_07_7M DEATH STAR: DEtermining Accurate Ramstedt mass-loss rates of THERmally pulsing AGB STARS EU 7-m 7
23:54:50 01:11:43 2017.1.00886.L NGC4298_b_06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution EU NA Total Power 6

2018-06-22

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:46:27</td>
<td>02:02:04</td>
<td>2017.1.00025.S</td>
<td>Copy of HATLAS_J_d_06_TM1</td>
<td>Unveiling molecular gas in local Herschel-ATLAS galaxies</td>
<td>Vlahakis</td>
<td>NA</td>
<td>12-m</td>
<td>8</td>
</tr>
<tr>
<td>01:14:19</td>
<td>02:38:39</td>
<td>2017.1.01406.S</td>
<td>RX_J1713_b_03_7M</td>
<td>A Quest for Cosmic Ray Acceleration Site: Unveiling the Shock-Cloud Interaction toward the Young SNR RX J1713.7-3946</td>
<td>Sano</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>01:31:56</td>
<td>02:41:34</td>
<td>2017.1.00886.L</td>
<td>NGC5643_a_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Schinnerer</td>
<td>NA</td>
<td>12-m</td>
<td>8</td>
</tr>
<tr>
<td>02:04:27</td>
<td>03:23:21</td>
<td>2017.1.00025.S</td>
<td>HATLAS_J_a_08_TM1</td>
<td>Unveiling molecular gas in local Herschel-ATLAS galaxies</td>
<td>Vlahakis</td>
<td>NA</td>
<td>12-m</td>
<td>8</td>
</tr>
<tr>
<td>02:42:39</td>
<td>03:51:49</td>
<td>2017.1.00886.L</td>
<td>NGC5643_a_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Schinnerer</td>
<td>EU NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
</tbody>
</table>
Main Sequence: GMCs as the Drivers of Galaxy Evolution

A systematic survey of dense gas kinematics and filamentary flows in massive quiescent clumps

Kodama

Deep contiguous mapping of the densest proto-cluster cores at z~2.5 with ALMA

Svoboda

A Quest for Cosmic Ray Acceleration Site: Unveiling the Shock-Cloud Interaction toward the Young SNR RX J1713.7-3946

Sano

A systematic survey of dense gas kinematics and filamentary flows in massive quiescent clumps

Svoboda

What sets CO excitation in clumpy, turbulent disk galaxies?

Fisher

From Beginning to End -- Star Formation and Molecular Cloud Evolution in the Small Magellanic Cloud

Johnson

Eccentric wide hot-subdwarf binaries: Testing the circumbinary disk hypothesis

Vos

Revealing the mechanism of massive star formation in NGC6822

Fujita

Are GMCs Real? Searching for the physical objects in a multiscale ISM

Rosolowsky

Eccentric wide hot-subdwarf binaries: Testing the circumbinary disk hypothesis

Vos

A survey of prestellar, high-mass clump candidates: constraining models of high-mass star formation

Sanhueza

A Quest for Cosmic Ray Acceleration Site: Unveiling the Shock-Cloud Interaction toward the Young SNR RX J1713.7-3946

Sano

The role of molecular gas in quenching star formation of green valley galaxies

Lin

The role of molecular gas in quenching star formation of green valley galaxies

Lin

The role of molecular gas in quenching star formation of green valley galaxies

Lin

The role of molecular gas in quenching star formation of green valley galaxies

Lin

A systematic survey of dense gas kinematics and filamentary flows in massive quiescent clumps

Svoboda

Deep contiguous mapping of the densest proto-cluster cores at z~2.5 with ALMA

Svoboda

A systematic survey of dense gas kinematics and filamentary flows in massive quiescent clumps

Svoboda

From Beginning to End -- Star Formation and Molecular Cloud Evolution in the Small Magellanic Cloud

Johnson

Eccentric wide hot-subdwarf binaries: Testing the circumbinary disk hypothesis

Vos

Eccentric wide hot-subdwarf binaries: Testing the circumbinary disk hypothesis

Vos

A survey of prestellar, high-mass clump candidates: constraining models of high-mass star formation

Sanhueza

A survey of prestellar, high-mass clump candidates: constraining models of high-mass star formation

Sanhueza

A survey of prestellar, high-mass clump candidates: constraining models of high-mass star formation

Sanhueza

Revealing the mechanism of massive star formation in NGC6822

Fujita

Are GMCs Real? Searching for the physical objects in a multiscale ISM

Rosolowsky

Eccentric wide hot-subdwarf binaries: Testing the circumbinary disk hypothesis

Vos

Revealing the mechanism of massive star formation in NGC6822

Fujita

Are GMCs Real? Searching for the physical objects in a multiscale ISM

Rosolowsky

Revealing the mechanism of massive star formation in NGC6822

Fujita

Are GMCs Real? Searching for the physical objects in a multiscale ISM

Rosolowsky

Revealing the mechanism of massive star formation in NGC6822

Fujita

A Quest for Cosmic Ray Acceleration Site: Unveiling the Shock-Cloud Interaction toward the Young SNR RX J1713.7-3946

Sano

A systematic survey of dense gas kinematics and filamentary flows in massive quiescent clumps

Svoboda

Deep contiguous mapping of the densest proto-cluster cores at z~2.5 with ALMA

Svoboda

A systematic survey of dense gas kinematics and filamentary flows in massive quiescent clumps

Svoboda

Eccentric wide hot-subdwarf binaries: Testing the circumbinary disk hypothesis

Vos

Eccentric wide hot-subdwarf binaries: Testing the circumbinary disk hypothesis

Vos

Revealing the mechanism of massive star formation in NGC6822

Fujita

A systematic survey of dense gas kinematics and filamentary flows in massive quiescent clumps

Svoboda

Deep contiguous mapping of the densest proto-cluster cores at z~2.5 with ALMA

Svoboda

A systematic survey of dense gas kinematics and filamentary flows in massive quiescent clumps

Svoboda

Eccentric wide hot-subdwarf binaries: Testing the circumbinary disk hypothesis

Vos
Drivers of Galaxy Evolution

1. **100,000 Molecular Clouds Across the Main Sequence: GMCs as the Drivers of Galaxy Evolution**
 - **Schinnerer**
 - **EU NA**
 - **12-m 6**

2. **From the main sequence to the red cloud: linking the molecular cloud lifecycle to galaxy evolution**
 - **Chevance**
 - **EU**
 - **7-m 6**

3. **100,000 Molecular Clouds Across the Main Sequence: GMCs as the Drivers of Galaxy Evolution**
 - **Schinnerer**
 - **EU NA**
 - **Total Power 6**

2018-06-23 Schedule

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00:39</td>
<td>00:47:10</td>
<td>2017.1.00886.L</td>
<td>NGC3621_a_06_TM1</td>
<td>100,000 Molecular Clouds Across the Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Schinnerer</td>
<td>EU NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>00:10:32</td>
<td>00:36:58</td>
<td>2017.1.01158.S</td>
<td>VV55N_a_06_7M</td>
<td>ACA Study on the Driving Mechanisms of Starburst and Main-Sequence Star Formation in Local Galaxies</td>
<td>Yamashita</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>00:47:14</td>
<td>01:57:47</td>
<td>2017.1.00886.L</td>
<td>SN_2016a_a_06_TM1</td>
<td>Searching for the Smoking Gun of Magnetar-Powered Super-Luminous Supernovae</td>
<td>Murase</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:02:16</td>
<td>02:15:48</td>
<td>2017.1.00886.L</td>
<td>NGC4941_b_06_TP</td>
<td>100,000 Molecular Clouds Across the Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Schinnerer</td>
<td>EU NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>01:33:55</td>
<td>02:53:50</td>
<td>2017.1.01406.S</td>
<td>RX_J1713_c_03_7M</td>
<td>A Quest for Cosmic Ray Acceleration Site: Unveiling the Shock-Cloud Interaction toward the Young SNR RX J1713.7-3946</td>
<td>Sano</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>01:59:06</td>
<td>03:09:04</td>
<td>2017.1.00975.S</td>
<td>SN_2016a_a_06_TM1</td>
<td>Searching for the Smoking Gun of Magnetar-Powered Super-Luminous Supernovae</td>
<td>Murase</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>03:09:11</td>
<td>04:24:00</td>
<td>2017.1.00506.S</td>
<td>USS1558_-a_06_TM1</td>
<td>Deep contiguous mapping of the densest proto-cluster cores at z=2.5 with ALMA</td>
<td>Kodama</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>03:23:47</td>
<td>04:57:07</td>
<td>2017.1.00716.S</td>
<td>G015.20_a_06_7M</td>
<td>A survey of prestellar, high-mass clump candidates: constraining models of high-mass star formation</td>
<td>Sanhueza</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>04:24:10</td>
<td>06:14:18</td>
<td>2017.1.00793.S</td>
<td>G34.4.1_a_06_TM2</td>
<td>Are Magnetic Fields Dynamically Important in Massive Star Formation?</td>
<td>Zhang</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>04:58:04</td>
<td>06:35:51</td>
<td>2017.1.00716.S</td>
<td>G015.20_a_06_7M</td>
<td>A survey of prestellar, high-mass clump candidates: constraining models of high-mass star formation</td>
<td>Sanhueza</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>06:14:26</td>
<td>07:47:15</td>
<td>2017.1.00793.S</td>
<td>G34.4.1_a_06_TM2</td>
<td>Are Magnetic Fields Dynamically Important in Massive Star Formation?</td>
<td>Zhang</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>06:37:07</td>
<td>07:16:05</td>
<td>2017.1.00595.S</td>
<td>IRC-3039_a_06_7M</td>
<td>DEATH STAR: DEtermining Accurate mass-loss rates of THermaIIy pulsing AGB STArS</td>
<td>Ramstedt</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>07:16:05</td>
<td>08:38:00</td>
<td>2017.1.01409.S</td>
<td>NGC6822_a_06_7M</td>
<td>Revealing the mechanism of massive star formation in NGC6822</td>
<td>Fujita</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>07:28:23</td>
<td>09:06:52</td>
<td>2017.1.00716.S</td>
<td>G025.16_a_06_TP</td>
<td>A survey of prestellar, high-mass clump candidates: constraining models of high-mass star formation</td>
<td>Sanhueza</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>08:39:12</td>
<td>10:10:34</td>
<td>2017.1.00931.S</td>
<td>SWBar_Fi_a_06_7M</td>
<td>From Beginning to End -- Star Formation and Molecular Cloud Evolution in the Small Magellanic Cloud</td>
<td>Johnson</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>09:01:10</td>
<td>09:54:15</td>
<td>2017.1.01558.S</td>
<td>LBQS0013_a_04_TM1</td>
<td>Molecular gas in high-redshift DLAs</td>
<td>Prochaska</td>
<td>NA</td>
<td>12-m</td>
<td>4</td>
</tr>
</tbody>
</table>
From Beginning to End -- Star Formation and Molecular Cloud Evolution in the Small Magellanic Cloud

100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution

100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution

Revealing the roles of filamentary clouds in GMC evolution of M33

100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution

100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution

100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution

From the main sequence to the red cloud: linking the molecular cloud lifecycle to galaxy evolution

From the main sequence to the red cloud: linking the molecular cloud lifecycle to galaxy evolution

From the main sequence to the red cloud: linking the molecular cloud lifecycle to galaxy evolution

100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution

100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution

Searching for the Smoking Gun of Magnetar-Powered Super-Luminous Supernovae

A Quest for Cosmic Ray Acceleration Site: Unveiling the Shock-Cloud Interaction toward the Young SNR RX J1713.7-3946

A survey of prestellar, high-mass clump candidates: constraining

Survey of prestellar, high-mass clump candidates: constraining

2018-06-24

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:32:22</td>
<td>01:42:44</td>
<td>SN_2016a_a_06_TM1</td>
<td></td>
<td>Searching for the Smoking Gun of Magnetar-Powered Super-Luminous Supernovae</td>
<td>Murase</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:12:56</td>
<td>02:36:24</td>
<td>RX_1713_c_03_7M</td>
<td></td>
<td>A Quest for Cosmic Ray Acceleration Site: Unveiling the Shock-Cloud Interaction toward the Young SNR RX J1713.7-3946</td>
<td>Sano</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>01:42:50</td>
<td>02:52:40</td>
<td>SN_2016a_a_06_TM1</td>
<td></td>
<td>Searching for the Smoking Gun of Magnetar-Powered Super-Luminous Supernovae</td>
<td>Murase</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:36:32</td>
<td>04:14:18</td>
<td>G015.20_a_06_7M</td>
<td></td>
<td>A survey of prestellar, high-mass clump candidates: constraining</td>
<td>Sanhueza</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
</tr>
</tbody>
</table>
models of high-mass star formation

02:52:47 04:06:45 2017.1.00506.S USS1558-.a.06_TM1 Deep contiguous mapping of the densest proto-cluster cores at z=2.5 with ALMA Kodama 12-m 6

04:06:51 05:20:26 2017.1.00506.S USS1558-.a.06_TM1 Deep contiguous mapping of the densest proto-cluster cores at z=2.5 with ALMA Kodama 12-m 6

04:14:25 05:37:43 2017.1.01406.S RX_J1713_c.03_7M A Quest for Cosmic Ray Acceleration Site: Unveiling the Shock-Cloud Interaction toward the Young SNR RX J1713.7-3946 Sano 7-m 3

05:20:32 05:47:45 2017.1.00200.S HD182681.a.06_TM1 RESolved ALMA Survey Of Nearby Stars (REASONS): a population study of the formation location of planetesimal belts Matra NA 12-m 6

05:41:03 07:32:15 2017.1.01409.S NGC6822_a.07_7M Revealing the mechanism of massive star formation in NGC6822 Fujita 7-m 7

05:48:17 06:37:46 2017.1.01116.S G33.738-.a.03_TM1 High Resolution Imaging of Inflow & Infall in Massive Star-forming Clumps Shirley NA 12-m 3

06:40:48 07:45:32 2017.1.01093.S 8616-610.a.03_TM1 The role of molecular gas in quenching star formation of green valley galaxies Lin 12-m 3

07:47:19 09:36:22 2017.1.01425.S 3C454.3.a.06_TM1 Probing the magneto-ionic medium at the jet base in AGN through Faraday rotation EU 12-m 6

08:00:01 09:49:51 2017.1.01409.S NGC6822.a.07_7M Revealing the mechanism of massive star formation in NGC6822 Fujita 7-m 7

09:31:30 10:47:54 2017.1.00886.L NGC1097_a.06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution EU NA Total Power 6

09:36:28 11:08:36 2017.1.01425.S 3C454.3.a.06_TM1 Probing the magneto-ionic medium at the jet base in AGN through Faraday rotation EU 12-m 6

09:51:15 11:22:30 2017.1.00931.S SWBar_Fi.a.06_7M From Beginning to End -- Star Formation and Molecular Cloud Evolution in the Small Magellanic Cloud Johnson NA 7-m 6

10:48:01 12:04:33 2017.1.00886.L NGC1097.a.06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution EU NA Total Power 6

11:22:40 12:32:50 2016.1.00324.L UDF_mosa_e.06_TM1 ASPECS: The ALMA SPECtral line Survey in the UDF - An ALMA Large Program Walter CL EU NA 12-m 6

11:33:06 13:04:23 2017.1.00461.S GMC-8.a.06_7M Revealing the roles of filamentary clouds in GMC evolution of M33 Muraoka EA 7-m 6

12:14:30 13:33:42 2017.1.00886.L NGC1097.a.06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution EU NA Total Power 6

12:36:50 13:47:46 2016.1.00324.L UDF_mosa_f.06_TM1 ASPECS: The ALMA SPECtral line Survey in the UDF - An ALMA Large Program Walter CL EU NA 12-m 6

13:36:06 14:35:33 2017.1.00129.S NGC1386_a.03_TP Deep CO(J=1-0) mapping survey of Fornax galaxies with Morita array Morokuma Total Power 3

15:16:20 16:23:59 2016.1.00324.L UDF_mosa_d.06_TM1 ASPECS: The ALMA SPECtral line Survey in the UDF - An ALMA Large Program Walter CL EU NA 12-m 6

16:41:37 17:49:15 2016.1.00324.L UDF_mosa_h.06_TM1 ASPECS: The ALMA SPECtral line Survey in the UDF - An ALMA Large Program Walter CL EU NA 12-m 6

22:12:08 23:05:11 2017.1.01176.S UV-23922.a.06_TM1 Quiescence of quiescent galaxies at z~2 Tanaka 12-m 6

22:27:12 23:51:31 2017.1.00766.S NGC4477.a.06_7M From the main sequence to the red cloud: linking the molecular cloud lifecycle to galaxy evolution Chevance EU 7-m 6
<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:17:28</td>
<td>01:11:52</td>
<td>2017.1.00975.S</td>
<td>SN_2016a_a_06_TM1</td>
<td>Searching for the Smoking Gun of Magnetar-Powered Super-Luminous Supernovae</td>
<td>Murase</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:42:38</td>
<td>02:21:03</td>
<td>2017.1.00886.L</td>
<td>NGC5042_b_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCS as the Drivers of Galaxy Evolution</td>
<td>EU NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>01:11:57</td>
<td>02:21:52</td>
<td>2017.1.00975.S</td>
<td>SN_2016a_a_06_TM1</td>
<td>Searching for the Smoking Gun of Magnetar-Powered Super-Luminous Supernovae</td>
<td>Murase</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:17:28</td>
<td>02:41:10</td>
<td>2017.1.01406.S</td>
<td>RX_J1713_c_03_7M</td>
<td>A Quest for Cosmic Ray Acceleration Site: Unveiling the Shock-Cloud Interaction toward the Young SNR RX J1713.7-3946</td>
<td>Sano</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>02:21:59</td>
<td>03:36:05</td>
<td>2017.1.00506.S</td>
<td>USS1558-_a_06_TM1</td>
<td>Deep contiguous mapping of the densest proto-cluster cores at z=2.5 with ALMA</td>
<td>Kodama</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>03:36:12</td>
<td>04:49:57</td>
<td>2017.1.00506.S</td>
<td>USS1558-_a_06_TM1</td>
<td>Deep contiguous mapping of the densest proto-cluster cores at z=2.5 with ALMA</td>
<td>Kodama</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>04:50:05</td>
<td>05:43:23</td>
<td>2017.1.01406.S</td>
<td>RX_J1713_c_03_TM1</td>
<td>A Quest for Cosmic Ray Acceleration Site: Unveiling the Shock-Cloud Interaction toward the Young SNR RX J1713.7-3946</td>
<td>Sano</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>05:44:05</td>
<td>06:37:11</td>
<td>2017.1.01406.S</td>
<td>RX_J1713_c_03_TM1</td>
<td>A Quest for Cosmic Ray Acceleration Site: Unveiling the Shock-Cloud Interaction toward the Young SNR RX J1713.7-3946</td>
<td>Sano</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>06:33:07</td>
<td>08:10:03</td>
<td>2016.1.01372.S</td>
<td>g34mm12_a_03_7M</td>
<td>Gravity vs B-field in massive-star forming clouds: Who is in the driving seat?</td>
<td>Koch</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>06:37:19</td>
<td>07:02:29</td>
<td>2017.1.01093.S</td>
<td>7815-127_a_03_TM1</td>
<td>The role of molecular gas in quenching star formation of green valley galaxies</td>
<td>Lin</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>07:02:36</td>
<td>07:43:32</td>
<td>2017.1.01093.S</td>
<td>8616-190_a_03_TM1</td>
<td>The role of molecular gas in quenching star formation of green valley galaxies</td>
<td>Lin</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>07:30:07</td>
<td>09:08:39</td>
<td>2017.1.00716.S</td>
<td>G28.531_a_06_TP</td>
<td>A survey of prestellar, high-mass clump candidates: constraining models of high-mass star formation</td>
<td>Sanhueza</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>07:43:39</td>
<td>08:24:27</td>
<td>2017.1.01093.S</td>
<td>8616-190_a_03_TM1</td>
<td>The role of molecular gas in quenching star formation of green valley galaxies</td>
<td>Lin</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>08:11:46</td>
<td>09:43:21</td>
<td>2017.1.00931.S</td>
<td>SWBar_Fi_a_06_7M</td>
<td>From Beginning to End -- Star Formation and Molecular Cloud Evolution in the Small Magellanic Cloud</td>
<td>Johnson</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>09:10:08</td>
<td>10:26:24</td>
<td>2017.1.00886.L</td>
<td>NGC1097_a_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCS as the Drivers of Galaxy Evolution</td>
<td>EU NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Duration</td>
<td>Name</td>
<td>Title</td>
<td>Author(s)</td>
<td>Instrument</td>
<td>Total Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>--</td>
<td>-----------</td>
<td>------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:43:29</td>
<td>00:00:40</td>
<td>SWBar_Fi_a_06_7M</td>
<td>From Beginning to End -- Star Formation and Molecular Cloud Evolution in the Small Magellanic Cloud</td>
<td>Johnson</td>
<td>NA</td>
<td>7-m 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:26:32</td>
<td>00:02:57</td>
<td>NGC1097_a_06_TP</td>
<td>100,000 Molecular Clouds Across the Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Schinnerer</td>
<td>EU NA</td>
<td>Total Power 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:37:19</td>
<td>00:00:48</td>
<td>U4-190_b_07_TM1</td>
<td>Structural evolution and quenching in massive galaxies at z~2</td>
<td>Tadaki</td>
<td>EA</td>
<td>12-m 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:24:27</td>
<td>00:00:31</td>
<td>GMC-8_a_06_7M</td>
<td>Revealing the roles of filamentary clouds in GMC evolution of M33</td>
<td>Muraoka</td>
<td>EA</td>
<td>7-m 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:52:57</td>
<td>00:00:32</td>
<td>NGC1546_a_06_TP</td>
<td>100,000 Molecular Clouds Across the Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Schinnerer</td>
<td>EU NA</td>
<td>Total Power 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>