2018-09-17

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>20:03:23</td>
<td>21:55:30</td>
<td>2017.1.00914.S</td>
<td>G348,700_a_07_7M</td>
<td>Extending SPARKS: Exploring the origin of single high-mass protostars, and rich clusters</td>
<td>Csengeri</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>20:14:05</td>
<td>21:05:01</td>
<td>2017.1.00568.S</td>
<td>iras1629_b_05_TM1</td>
<td>Water masers toward IRAS16293-2422</td>
<td>Kristensen</td>
<td>EU</td>
<td>12-m</td>
<td>5</td>
</tr>
<tr>
<td>21:05:30</td>
<td>21:29:18</td>
<td>2017.1.00449.S</td>
<td>ry_lup_a_07_TM1</td>
<td>A disturbed transition disk: asymmetries and warps in RY Lup</td>
<td>van der Marel</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>23:40:15</td>
<td>01:34:58</td>
<td>2017.1.00449.S</td>
<td>G008.670_a_07_7M</td>
<td>Extending SPARKS: Exploring the origin of single high-mass protostars, and rich clusters</td>
<td>Csengeri</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
</tbody>
</table>

2018-09-18

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:40:57</td>
<td>03:10:43</td>
<td>2015.1.00169.S</td>
<td>B335_a_07_TE</td>
<td>B335: A Test-Bed for Spherical Collapse</td>
<td>Evans</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>01:56:56</td>
<td>02:28:38</td>
<td>2017.A.00056.S</td>
<td>PCCS2E_8_r_06_7M</td>
<td>The nature of Planck compact sources at 353 microns</td>
<td>Mroczkowski</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>03:03:03</td>
<td>04:15:26</td>
<td>2017.A.00054.S</td>
<td>NGC_346_a_06_TP</td>
<td>ACA Observatory Project: SMC Band 6 CO and continuum mapping</td>
<td>Agliozzo</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>03:10:50</td>
<td>03:44:12</td>
<td>2017.1.00255.S</td>
<td>ngc7130_a_06_TM1</td>
<td>Revealing the internal structure of molecular outflows: spatially resolved observations in local LIRGs</td>
<td>Pereira Santaella</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>03:13:53</td>
<td>03:40:31</td>
<td>2017.A.00056.S</td>
<td>PCCS2E_8_x_06_7M</td>
<td>The nature of Planck compact sources at 353 microns</td>
<td>Mroczkowski</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>03:49:05</td>
<td>05:04:14</td>
<td>2017.A.001018.S</td>
<td>SPT0103_a_06_TM1</td>
<td>A high-resolution look on CI and Bethermin CO(7-6) in 2 lensed SPT galaxies: extended gas reservoirs or compact starbursts?</td>
<td>Bethermin</td>
<td>EU</td>
<td>12-m</td>
<td>5</td>
</tr>
<tr>
<td>04:56:07</td>
<td>06:54:31</td>
<td>2017.A.00053.S</td>
<td>ESO_353_a_08_7M</td>
<td>ALMA ACA Band-8 observatory project: Mapping fine structure lines of neutral atomic carbon in local bright galaxies</td>
<td>Yang</td>
<td>EU</td>
<td>7-m</td>
<td>8</td>
</tr>
<tr>
<td>05:04:20</td>
<td>05:53:55</td>
<td>2017.1.00624.S</td>
<td>J0100_CO_a_06_TM1</td>
<td>Diagnose Gas Excitation in the Most Luminous Quasar at Cosmic Dawn</td>
<td>Fan</td>
<td>NA</td>
<td>12-m</td>
<td>5</td>
</tr>
<tr>
<td>05:54:02</td>
<td>06:40:15</td>
<td>2017.1.00624.S</td>
<td>J0100_CO_a_06_TM1</td>
<td>Diagnose Gas Excitation in the Most Luminous Quasar at Cosmic Dawn</td>
<td>Fan</td>
<td>NA</td>
<td>12-m</td>
<td>5</td>
</tr>
<tr>
<td>06:40:22</td>
<td>07:55:43</td>
<td>2017.1.01018.S</td>
<td>SPT0103_a_06_TM1</td>
<td>A high-resolution look on CI and Bethermin CO(7-6) in 2 lensed SPT galaxies: extended gas reservoirs or compact starbursts?</td>
<td>Bethermin</td>
<td>EU</td>
<td>12-m</td>
<td>5</td>
</tr>
<tr>
<td>06:54:37</td>
<td>08:59:20</td>
<td>2017.A.00053.S</td>
<td>NGC660_a_08_7M</td>
<td>ALMA ACA Band-8 observatory project: Mapping fine structure lines of neutral atomic carbon in local bright galaxies</td>
<td>Yang</td>
<td>EU</td>
<td>7-m</td>
<td>8</td>
</tr>
</tbody>
</table>
Formation of star clusters revealed in an isolated environment in the LMC

Morphology of Polarization in T Tauri Stars: What the Flux?

Jupiter Family Comet Composition: Unique insights into Disk Midplane Chemistry

CI observations toward compact molecular clouds associated with isolated intermediate- and high-mass YSOs in the LMC

CI observations toward compact molecular clouds associated with isolated intermediate- and high-mass YSOs in the LMC

Evolution of outflow-envelope interactions in low-mass protostars

High resolution ALMA imaging of gas and dust in low-z gas rich galaxies (resubmission)

Jupiter Family Comet Composition: Unique insights into Disk Midplane Chemistry

Weighing Black Hole Masses in Low-Mass Galaxies

100,000 Molecular Clouds Across the Main Sequence: GMCs as the Drivers of Galaxy Evolution

Resolving the kinematic structure of a Smit [CII] emitter 800 million years after the Big Bang

The chemistry of M dwarf protoplanetary disks

Volatilie locking in protoplanetary disks: linking carbon abundances from 0.1 to ~100 AU

100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCS as the Drivers of Galaxy Evolution

100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCS as the Drivers of Galaxy Evolution

From the main sequence to the red cloud: linking the molecular cloud lifecycle to galaxy evolution

Measuring black hole masses in early-type galaxies with ALMA

100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCS as the Drivers of Galaxy Evolution

High resolution ALMA imaging of gas and dust in low-z gas rich galaxies (resubmission)

Searching for Kuiper-Belt analogues around the closest M-dwarf planetary systems

100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCS as the Drivers of Galaxy Evolution

IBISICO-south: mapping feeding and feedback in an unbiased sample of local AGN

Extending SPARKS: Exploring the origin of single high-mass protostars, and rich clusters

Complete Census of Bright Lensed Submillimeter Galaxies Discovered by the Herschel Lensing Survey
20:19:30 22:14:40 2017.1.00569.S Sz111_a_06_TM1 Solving the Discrepancy between Spectroscopic and Dynamical Stellar Mass Determinations of Lupus YSOs Yen EU 12-m 6
22:31:16 23:00:10 2017.1.00022.S Superant_a_05_TM1 AGN feedback and molecular line flux Imanishi ratios in luminous infrared galaxies EA 12-m 5
23:00:17 23:58:14 2017.1.00022.S Superant_b_05_TM1 AGN feedback and molecular line flux Imanishi ratios in luminous infrared galaxies EA 12-m 5
23:09:19 00:32:23 2017.1.01261.S G11.92-0_a_06_7M How Hierarchical is Cluster Formation? The Case of G11.92-0.61 Cyganowski EU 7-m 6
23:58:21 00:42:26 2017.1.00999.S CK_Vul_a_05_TM1 Complex molecules and rare isotopes Kaminski in Nova 1670 NA 12-m 5

<p>| 2018-09-19 |</p>
<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:51:29</td>
<td>02:02:01</td>
<td>2016.1.00268.S</td>
<td>W51e2_a_07_TM1</td>
<td>Probing Inward Motion of Magnetized Gas in Massive Star Forming Region W51e2/e8: From 0.5 pc to 1500 AU</td>
<td>Su</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>00:55:05</td>
<td>02:16:23</td>
<td>2017.1.01406.S</td>
<td>RX_J1713_a_03_TP</td>
<td>A Quest for Cosmic Ray Acceleration Site: Unveiling the Shock-Cloud Interaction toward the Young SNR RX J1713.7-3946</td>
<td>Sano</td>
<td>EA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>01:26:50</td>
<td>03:20:14</td>
<td>2017.1.00914.S</td>
<td>G008.670_a_07_7M</td>
<td>Extending SPARKS: Exploring the origin of single high-mass protostars, and rich clusters</td>
<td>Csengeri</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>02:22:31</td>
<td>03:25:20</td>
<td>2017.1.00598.S</td>
<td>NGC_7674_a_06_TM1</td>
<td>A Search for Infrared Cores in Compton Thick AGN</td>
<td>Privon</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>03:09:59</td>
<td>05:36:27</td>
<td>2017.A.00054.S</td>
<td>NGC_346_a_03_TP</td>
<td>ACA Observatory Project: SMC Band 6 CO and continuum mapping</td>
<td>Agliozzo</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>03:25:27</td>
<td>03:44:45</td>
<td>2017.1.01658.S</td>
<td>MACSJ215_a_06_TM1</td>
<td>Complete Census of Bright Lensed Submillimeter Galaxies Discovered by the Herschel Lensing Survey</td>
<td>Egami</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>03:44:56</td>
<td>04:05:42</td>
<td>2017.1.01658.S</td>
<td>0114-412_a_06_TM1</td>
<td>Complete Census of Bright Lensed Submillimeter Galaxies Discovered by the Herschel Lensing Survey</td>
<td>Egami</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>04:05:49</td>
<td>05:09:55</td>
<td>2017.1.00301.S</td>
<td>NGC_315_a_06_TM1</td>
<td>Measuring black hole masses in early-type galaxies with ALMA</td>
<td>Barth</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>04:24:00</td>
<td>06:28:02</td>
<td>2017.A.00053.S</td>
<td>NGC7582_a_08_7M</td>
<td>ALMA ACA Band-8 observatory project: Mapping fine structure lines of neutral atomic carbon in local bright galaxies</td>
<td>Yang</td>
<td>EU</td>
<td>7-m</td>
<td>8</td>
</tr>
<tr>
<td>05:10:02</td>
<td>06:27:38</td>
<td>2017.1.00461.S</td>
<td>GMC-8_a_06_TM1</td>
<td>Revealing the roles of filamentary clouds in GMC evolution of M33</td>
<td>Muraoka</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>05:37:18</td>
<td>06:10:55</td>
<td>2015.1.00393.S</td>
<td>query_a_08_TP</td>
<td>CI observations toward compact molecular clouds associated with isolated intermediate- and high-mass YSOs in the LMC</td>
<td>Harada</td>
<td>EA</td>
<td>Total Power</td>
<td>8</td>
</tr>
<tr>
<td>06:11:03</td>
<td>07:46:27</td>
<td>2017.1.00093.S</td>
<td>YSO22_a_06_TP</td>
<td>Evolution of molecular clouds associated with O-type YSOs in giant molecular clouds in the LMC</td>
<td>Onishi</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>06:27:45</td>
<td>07:01:01</td>
<td>2017.1.00391.S</td>
<td>NGC0708_a_06_TM2</td>
<td>WISDOM: Extending black hole demographics across the mass-size plane with ALMA</td>
<td>North</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>06:28:09</td>
<td>08:33:12</td>
<td>2017.A.00053.S</td>
<td>NGC660_a_08_7M</td>
<td>ALMA ACA Band-8 observatory project: Mapping fine structure lines of neutral atomic carbon in local bright galaxies</td>
<td>Yang</td>
<td>EU</td>
<td>7-m</td>
<td>8</td>
</tr>
<tr>
<td>07:46:35</td>
<td>09:11:02</td>
<td>2017.1.00612.S</td>
<td>2-050941_a_06_TP</td>
<td>Formation of star clusters revealed in an isolated</td>
<td>Harada</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
</tbody>
</table>
08:33:17 09:52:52 2017.1.01053.S IRAS_041_b_07_7M environment in the LMC
SMORES: Shocked Molecular Outflows across a Range of Environments Survey

09:11:10 10:35:38 2017.1.00612.S 2-050941_a_06_TP Formation of star clusters revealed in an isolated environment in the LMC

10:35:45 12:07:23 2017.1.00678.S HOPS-408_a_06_TP Evolution of outflow-envelope interactions in low-mass protostars

11:36:58 13:00:32 2017.1.00894.S 21PGiaco_a_06_7M Jupiter Family Comet Composition: Unique insights into Disk Midplane Chemistry

11:59:02 12:54:31 2017.1.00022.S IRAS_085_b_05_TM1 AGN feedback and molecular line flux imanishi ratios in luminous infrared galaxies

12:57:14 14:33:36 2017.1.00022.S IRAS_085_a_05_TM1 AGN feedback and molecular line flux imanishi ratios in luminous infrared galaxies

13:13:12 15:15:57 2017.1.00857.S WW_Cha_a_08_7M Volatile locking in protoplanetary disks: linking carbon abundances from 0.1 to ~100 AU

13:44:12 14:55:31 2017.1.01647.S HATLASJ1_b_07_TM1 High resolution ALMA imaging of gas and dust in low-z gas rich galaxies (resubmission)

13:48:01 15:01:14 2017.1.00886.L NGC2903_e_06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCS as the Drivers of Galaxy Evolution

15:06:46 15:47:52 2017.1.00845.S HD_10054_a_07_TM1 Tracing the Carbon Chemistry Associated with Planet Formation

15:12:27 16:11:26 2017.1.00886.L NGC4569_a_06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCS as the Drivers of Galaxy Evolution

23:11:07 00:47:12 2015.1.01018.S B335_a_07_TE Magnetic Field Structure around a Protostar with Effective Magnetic Braking

23:15:59 01:08:32 2017.1.00318.S W49N_a_07_7M A Resolved Measurement of the (Break of) HCN, H_2, and Star Formation Relations in a Local Starburst Environment

23:18:54 00:52:34 2017.1.01355.S W51-IRS2_a_06_TP ALMA-IMF: ALMA transforms our view of the origin of stellar masses

2018-09-20

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:47:19</td>
<td>02:27:14</td>
<td>2015.1.01018.S B335_a_07_TE Magnetic Field Structure around a Protostar with Effective Magnetic Braking</td>
<td>Yen</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:53:59</td>
<td>02:15:17</td>
<td>2017.1.01406.S RX_J1713_a_03_TP A Quest for Cosmic Ray Acceleration Site: Unveiling the Shock-Cloud Interaction toward the Young SNR RX J1713.7-3946</td>
<td>Sano</td>
<td>EA</td>
<td>Total Power</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01:10:14</td>
<td>02:27:47</td>
<td>2017.1.01600.S HD_16329_a_08_7M Measuring an Empirical Temperature Structure for the HD 163296 Disk</td>
<td>Loomis</td>
<td>NA</td>
<td>7-m</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02:27:20</td>
<td>03:58:40</td>
<td>2015.1.01018.S B335_a_07_TE Magnetic Field Structure around a Protostar with Effective Magnetic Braking</td>
<td>Yen</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03:26:55</td>
<td>03:53:54</td>
<td>2017.A.00056.S PCCS2E_8_s_06_7M The nature of Planck compact sources at 353 microns</td>
<td>Mroczkowski</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03:54:02</td>
<td>05:58:21</td>
<td>2017.A.00053.S NGC7582_a_08_7M ALMA ACA Band-8 observatory</td>
<td>Yang</td>
<td>EU</td>
<td>7-m</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Main Sequence: GMCs as the Drivers of Galaxy Evolution

100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution

AGN feedback and molecular line flux Imanishi ratios in luminous infrared galaxies

Understanding the role of infrared radiative pumping in ultraluminous infrared galaxies

AGN feedback and molecular line flux Imanishi ratios in luminous infrared galaxies

ALMA ACA Band-8 observatory project: Mapping fine structure lines of neutral atomic carbon in local bright galaxies

Are Close Binaries Formed Through Disk Fragmentation?

Formation of star clusters revealed in an isolated environment in the LMC

Chronology of Episodic Accretion in Protostars - A survey of CO and H2O snow lines

Formation of star clusters revealed in an isolated environment in the LMC

SMORES: Shocked Molecular Outflows across a Range of Environments Survey

Chronology of Episodic Accretion in Protostars - A survey of CO and H2O snow lines

Jupiter Family Comet Composition: Unique insights into Disk Midplane Chemistry

CI observations toward compact molecular clouds associated with isolated intermediate- and high-mass YSOs in the LMC

DETECTING THE CIRCUMPLANETARY DISK AROUND THE SPIRAL-ARM-DRIVING PLANET IN A PROTOPLANETARY DISK

Formation of star clusters revealed in an isolated environment in the LMC

Jupiter Family Comet Composition: Unique insights into Disk Midplane Chemistry

A complete study of FU/EX Or objects Hales

WISDOM: Measuring High-mass Supermassive Black Holes using CO Kinematics

100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution

Supernova fall-back disks around neutron stars

Evolution of outflow-envelope interactions in low-mass protostars

100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution

Tw Hya as a Chemical Rosetta Stone Cleeves

Volatiles locking in protoplanetary disks: linking carbon abundances from 0.1 to ~100 AU

100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution

High resolution ALMA imaging of gas Ibar and dust in low-z gas rich galaxies (resubmission)

100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution
Drivers of Galaxy Evolution

Volatile locking in protoplanetary disks: linking carbon abundances from 0.1 to ~100 AU

McClure EU 7-m 8

Complete Census of Bright Lensed Submillimeter Galaxies Discovered by the Herschel Lensing Survey

Egami NA 12-m 6

Constraining the cold accretion onto the most massive Black Holes

Edge EU 12-m 3

100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCS as the Drivers of Galaxy Evolution

EU NA Total Power 6

Sub-parsec Gas Excitation in the Galactic Center

NA 7-m 7

Feeding and feedback in an unbiased Malkan and representative sample of AGN in the local Universe

EU 12-m 6

How an obscured quasar loses its natal cocoon: the case of PKS 1549-79

Morganti EU 12-m 7

A first step towards calibrating SN Ia distances with H2O megamasers

Pesce NA 12-m 5

A Quest for Cosmic Ray Acceleration Site: Unveiling the Shock-Cloud Interaction toward the Young SNR RX J1713.7-3946

Sano EA Total Power 3

Sub-parsec Gas Excitation in the Galactic Center

Mills NA 7-m 7

Water masers toward IRAS16293-2422

Kristensen EU 12-m 5

Extending SPARKS: Exploring the origin of single high-mass protostars, and rich clusters

Csengeri EU 7-m 7

ALMA-IMF: ALMA transforms our view of the origin of stellar masses

Motte CL EU NA Total Power 6

Magnetic Field Structure around a Protostar with Effective Magnetic Braking

Yen EA 12-m 7

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:01:29</td>
<td>01:22:29</td>
<td>2017.1.01406.S</td>
<td>RX_J1713_b_03_TP</td>
<td>A Quest for Cosmic Ray Acceleration Site: Unveiling the Shock-Cloud Interaction toward the Young SNR RX J1713.7-3946</td>
<td>Sano</td>
<td>EA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>00:55:35</td>
<td>02:34:51</td>
<td>2015.1.01018.S</td>
<td>B335_a_07_TE</td>
<td>Magnetic Field Structure around a Protostar with Effective Magnetic Braking</td>
<td>Yen</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>01:18:30</td>
<td>03:06:51</td>
<td>2017.1.00914.S</td>
<td>G014.331_a_07_7M</td>
<td>Extending SPARKS: Exploring the origin of single high-mass protostars, and rich clusters</td>
<td>Csengeri</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>02:56:59</td>
<td>04:24:37</td>
<td>2017.1.01499.S</td>
<td>B2200+42_a_08_TM1</td>
<td>LiH - a probe of Galactic Li evolution and the lithium problems</td>
<td>Fu</td>
<td>EU</td>
<td>12-m</td>
<td>8</td>
</tr>
<tr>
<td>03:31:38</td>
<td>05:36:01</td>
<td>2017.A.00053.S</td>
<td>NGC7582_a_08_7M</td>
<td>ALMA ACA Band-8 observatory project: Mapping fine structure lines of neutral atomic carbon in local bright galaxies</td>
<td>Yang</td>
<td>EU</td>
<td>7-m</td>
<td>8</td>
</tr>
<tr>
<td>04:24:44</td>
<td>05:27:18</td>
<td>2017.1.00338.S</td>
<td>ESO286-G_a_06_TM1</td>
<td>Resolving the controversy of the stellar IMF in SNELLS-1 using</td>
<td>Davis</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
</tbody>
</table>
molecular gas dynamics
Accretion-flow survey in nearby radio galaxies
Kameno
EA
12-m
7

ALMA ACA Band-8 observatory project: Mapping fine structure lines of neutral atomic carbon in local bright galaxies
Yang
EU
7-m
8

CI observations toward compact molecular clouds associated with isolated intermediate- and high-mass YSOs in the LMC
Harada
EA
Total Power
8

ACA Observatory Project: SMC Band 6 CO and continuum mapping
Agliozzo
EU
Total Power
6

Chronology of Episodic Accretion in Protostars - A survey of CO and H2O snow lines
Hsieh
EA
12-m
6

ACA Observatory Project: SMC Band 6 CO and continuum mapping
Agliozzo
EU
Total Power
6

Hot Water in HL Tau
Humphreys
EU
12-m
5

ALMA ACA Band-8 observatory project: Mapping fine structure lines of neutral atomic carbon in local bright galaxies
Yang
EU
7-m
8

AGN feedback and molecular line flux Imanishi ratios in luminous infrared galaxies
EA
12-m
5

A complete study of FU/EX Or objects Hales
NA
12-m
6

How can cold molecular gas survive near R136 in 30 Doradus?
Rubio
CL
7-m
7

Test the chemistry of turbulent grain motion in a dark cloud.
Ge
CL
Total Power
6

Calibrating Chemical Tracers of Primordial Gas in Circumstellar Disks
Anderson
NA
12-m
7

Searching for Kuiper-Belt analogues around the closest M-dwarf planetary systems
Amado
EU
7-m
6

Weighing Black Hole Masses in Low-Mass Galaxies
Nguyen
NA
12-m
6

The origin of the non-thermal emission of the peculiar transient AT2018cow
Schulze
OTHER
12-m
3

ALMA-IMF: ALMA transforms our view of the origin of stellar masses
Motte
CL EA EU NA
Total Power
3

Confirmation of Interstellar Hydroxylamine (NH2OH)
McGuire
NA
12-m
7

Extending SPARKS: Exploring the origin of single high-mass protostars, and rich clusters
Csengeri
EU
7-m
7

ALMA-IMF: ALMA transforms our view of the origin of stellar masses
Motte
CL EA EU NA
Total Power
6

The origin of the non-thermal emission of the peculiar transient AT2018cow
Schulze
OTHER
12-m
7

Extending SPARKS: Exploring the origin of single high-mass protostars, and rich clusters
Csengeri
EU
7-m
7

What is the Origin of the Spiral Structure in the Protoplanetary Disk around Elias 2-27?
Perez
CL
12-m
7
<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:38:01</td>
<td>02:14:25</td>
<td>2017.1.01355.L</td>
<td>G008.67_a_03_TP</td>
<td>ALMA-IMF: ALMA transforms our view of the origin of stellar masses</td>
<td>Motte</td>
<td>CL EA EU NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>01:16:43</td>
<td>01:48:43</td>
<td>2017.A.00056.S</td>
<td>PCCS2E_8_o_06_7M</td>
<td>The nature of Planck compact sources at 353 microns</td>
<td>Mroczkowski</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>01:49:24</td>
<td>02:52:12</td>
<td>2017.1.00338.S</td>
<td>ESO286-G_a_06_TM1</td>
<td>Resolving the controversy of the stellar IMF in SNELLS-1 using molecular gas dynamics</td>
<td>Davis</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:52:19</td>
<td>03:34:52</td>
<td>2017.1.00471.S</td>
<td>XCS2215_a_07_TM1</td>
<td>Gas kinematics of galaxies infalling into a massive galaxy cluster at z=1.46</td>
<td>Hayashi</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>03:52:09</td>
<td>04:40:22</td>
<td>2017.1.01301.S</td>
<td>PJ359-06_a_06_TM1</td>
<td>The structure of z>6 quasar host galaxies</td>
<td>Walter</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>03:57:22</td>
<td>04:23:50</td>
<td>2017.A.00056.S</td>
<td>PCCS2_85_e_06_7M</td>
<td>The nature of Planck compact sources at 353 microns</td>
<td>Mroczkowski</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>04:23:57</td>
<td>06:27:38</td>
<td>2017.A.00053.S</td>
<td>NGC7582_a_08_7M</td>
<td>ALMA ACA Band-8 observatory project: Mapping fine structure lines of neutral atomic carbon in local bright galaxies</td>
<td>Yang</td>
<td>EU</td>
<td>7-m</td>
<td>8</td>
</tr>
<tr>
<td>04:40:29</td>
<td>05:29:49</td>
<td>2017.1.01301.S</td>
<td>PJ007+04_a_06_TM1</td>
<td>The structure of z>6 quasar host galaxies</td>
<td>Walter</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>05:29:53</td>
<td>06:15:56</td>
<td>2017.1.01301.S</td>
<td>J0142-33_a_06_TM1</td>
<td>The structure of z>6 quasar host galaxies</td>
<td>Walter</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>06:27:46</td>
<td>08:32:43</td>
<td>2017.A.00053.S</td>
<td>NGC660_a_08_7M</td>
<td>ALMA ACA Band-8 observatory project: Mapping fine structure lines of neutral atomic carbon in local bright galaxies</td>
<td>Yang</td>
<td>EU</td>
<td>7-m</td>
<td>8</td>
</tr>
<tr>
<td>08:32:50</td>
<td>10:01:55</td>
<td>2017.1.00894.S</td>
<td>21PGiaco_a_06_7M</td>
<td>Jupiter Family Comet Composition: Unique insights into Disk Midplane Chemistry</td>
<td>Cordiner</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>09:22:23</td>
<td>10:36:48</td>
<td>2017.1.01078.S</td>
<td>Per-emb--a_06_TM1</td>
<td>Doubling the Number of Class 0 and I Segura-Cox Disks Through ALMA Line Observations of Perseus Disk Candidates</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10:02:02</td>
<td>11:30:25</td>
<td>2017.1.00894.S</td>
<td>21PGiaco_a_06_7M</td>
<td>Jupiter Family Comet Composition: Unique insights into Disk Midplane Chemistry</td>
<td>Cordiner</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>10:43:00</td>
<td>10:59:29</td>
<td>2017.1.01031.S</td>
<td>V582_Aur_a_06_TM2</td>
<td>A complete study of FU/EX Or objects Hales</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10:59:36</td>
<td>11:35:43</td>
<td>2017.1.00698.S</td>
<td>gamma_le_a_07_TM1</td>
<td>Measuring the Emission of Stellar Atmospheres at Submillimeter/Millimeter Wavelengths</td>
<td>White</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>11:51:53</td>
<td>13:19:50</td>
<td>2017.1.00750.T</td>
<td>21PGiaco_a_07_7M</td>
<td>Direct sublimation vs. gas-phase synthesis: the missing link in mm/sub-mm cometary science</td>
<td>Cordiner</td>
<td>NA</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>11:53:15</td>
<td>13:07:55</td>
<td>2017.1.00750.T</td>
<td>21PGiaco_a_07_TM1</td>
<td>Direct sublimation vs. gas-phase synthesis: the missing link in mm/sub-mm cometary science</td>
<td>Cordiner</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>----</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>00:15:31</td>
<td>01:38:18</td>
<td>2017.1.01355.L W43-MM1_a_03_TP</td>
<td>ALMA-IMF: ALMA transforms our view of the origin of stellar masses</td>
<td>Motte</td>
<td>CL EA EU NA</td>
<td>Total Power</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>00:15:43</td>
<td>02:03:23</td>
<td>2017.1.00318.S W49N_a_07_7M</td>
<td>A Resolved Measurement of the (Break of) HCN, H_2, and Star Formation Relations in a Local Starburst Environment</td>
<td>Galvan-Madrid</td>
<td>OTHER</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>01:02:45</td>
<td>02:34:08</td>
<td>2015.1.01018.S B335_a_07_TE</td>
<td>Magnetic Field Structure around a Protostar with Effective Magnetic Braking</td>
<td>Yen</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>01:38:25</td>
<td>03:00:55</td>
<td>2017.1.01355.L W43-MM1_a_03_TP</td>
<td>ALMA-IMF: ALMA transforms our view of the origin of stellar masses</td>
<td>Motte</td>
<td>CL EA EU NA</td>
<td>Total Power</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>02:08:36</td>
<td>03:59:39</td>
<td>2017.A.00053.S NGC7582_a_08_7M</td>
<td>ALMA ACA Band-8 observatory project: Mapping fine structure lines of neutral atomic carbon in local bright galaxies</td>
<td>Yang</td>
<td>EU</td>
<td>7-m</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>02:34:15</td>
<td>03:39:02</td>
<td>2017.1.00023.S IRAS_205_c_05_TP</td>
<td>Understanding the role of infrared radiative pumping in ultraluminous infrared galaxies</td>
<td>Imanishi</td>
<td>EA</td>
<td>12-m</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>03:01:03</td>
<td>05:27:51</td>
<td>2017.A.00054.S NGC_346_a2_03_TP</td>
<td>ACA Observatory Project: SMC Band 6 CO and continuum mapping</td>
<td>Agliozzo</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>03:39:09</td>
<td>04:43:49</td>
<td>2017.1.00023.S IRAS_205_c_05_TP</td>
<td>Understanding the role of infrared radiative pumping in ultraluminous infrared galaxies</td>
<td>Imanishi</td>
<td>EA</td>
<td>12-m</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>04:00:20</td>
<td>06:04:43</td>
<td>2017.A.00053.S NGC7582_a_08_7M</td>
<td>ALMA ACA Band-8 observatory project: Mapping fine structure lines of neutral atomic carbon in local bright galaxies</td>
<td>Yang</td>
<td>EU</td>
<td>7-m</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>04:48:04</td>
<td>06:01:09</td>
<td>2017.1.01043.S Fomalhau_a_06_TP</td>
<td>Probing Planet-Disk Interactions in the Fomalhau System</td>
<td>MacGregor</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>06:09:24</td>
<td>07:44:39</td>
<td>2017.1.00190.S z7_GSD_3_a_08_TM1</td>
<td>Physics of the interstellar medium of galaxies in the reionization era: the [OIII]-to-[CII] line ratio II</td>
<td>Inoue</td>
<td>EA</td>
<td>12-m</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>06:50:03</td>
<td>08:21:02</td>
<td>2017.A.00053.S NGC660_a_08_7M</td>
<td>ALMA ACA Band-8 observatory project: Mapping fine structure lines of neutral atomic carbon in local bright galaxies</td>
<td>Yang</td>
<td>EU</td>
<td>7-m</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>07:44:46</td>
<td>08:59:38</td>
<td>2017.1.01078.S Per-emb-_a_06_TM1</td>
<td>Doubling the Number of Class 0 and I Segura-Cox Disks Through ALMA Line Observations of Perseus Disk Candidates</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:51:37</td>
<td>09:32:49</td>
<td>2017.A.00056.S PCCS2E_8_ad_06_7M</td>
<td>The nature of Planck compact sources at 353 microns</td>
<td>Mroczkowski</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>08:59:45</td>
<td>10:16:23</td>
<td>2017.1.01078.S Per-emb-_a_06_TM1</td>
<td>Doubling the Number of Class 0 and I Segura-Cox Disks Through ALMA Line Observations of Perseus Disk</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10:12:04 11:58:10 2017.1.00750.T 21PGiacob_07_7M Direct sublimation vs. gas-phase synthesis: the missing link in mm/sub-mm cometary science Cordiner NA 7-m 7
10:28:14 11:42:47 2017.1.00750.T 21PGiacob_07_7M1 Direct sublimation vs. gas-phase synthesis: the missing link in mm/sub-mm cometary science Cordiner NA 12-m 7
12:11:07 13:56:45 2017.1.00750.T 21PGiacob_07_7M Direct sublimation vs. gas-phase synthesis: the missing link in mm/sub-mm cometary science Cordiner NA 7-m 7
13:35:44 14:47:36 2017.1.00886.L NGC3511_b_06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution EU NA Total Power 6
14:00:59 15:02:13 2017.1.00527.S G12.v10._h_06_7M The molecular gas and resolved star-formation law in low-redshift SMGs Oteo EU 7-m 6
15:06:06 16:20:39 2017.1.00886.L NGC3621_d_06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution EU NA Total Power 6
15:06:47 16:45:05 2017.1.00367.S AGAL301_.a_07_7M Establishing a timeline for the high-mass star-formation process Giannetti EU 7-m 7
16:20:46 17:30:32 2017.1.00886.L NGC4826_a_06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution EU NA Total Power 6
17:41:07 18:50:50 2017.1.00886.L NGC4826_a_06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution EU NA Total Power 6
17:42:12 19:14:22 2017.1.00766.S NGC4476_a_06_7M From the main sequence to the red cloud: linking the molecular cloud lifecycle to galaxy evolution Chevance EU 7-m 6
19:10:17 20:00:13 2017.A.00045.T AT2018co_h_07_TM1 The origin of the non-thermal emission of the peculiar transient AT2018cow Schulze OTHER 12-m 7
21:08:22 21:54:37 2017.1.00569.S Sz83_a_06_TM1 Solving the Discrepancy between Spectroscopic and Dynamical Stellar Mass Determinations of Lupus YSOs Yen EU 12-m 6
23:21:15 00:18:55 2017.1.01157.S G028_C1_a_05_7M Gas vs. solid phase deuterated chemistry Zahorecz EA 7-m 5
0:01:43:55 2017.1.01301.S J2100-17_a_06_TM1 The structure of z>6 quasar host galaxies Walter EU 12-m 6
01:00:00 2017.1.01355.L W43-MM1_a_03_TP ALMA-IMF: ALMA transforms our view of the origin of stellar masses Motte CL EA EU NA Total Power 3
01:19:11 2017.A.00056.S PCSS2E_8_i_06_7M The nature of Planck compact sources at 353 microns Mroczkowski EU 7-m 6
01:44:27 2017.1.01301.S J2318-31_a_06_TM1 The structure of z>6 quasar host galaxies Walter EU 12-m 6
01:46:15 2017.A.00056.S PCSS2E_8_g_06_7M The nature of Planck compact sources at 353 microns Mroczkowski EU 7-m 6
02:02:22 2017.A.00054.S NGC_346_b_06_TP ACA Observatory Project: SMC Band 6 CO and continuum mapping Agliozzo EU Total Power 6
02:02:45 2017.1.00598.S NGC_7130_a_06_TM1 A Search for Infrared Cores in Compton Thick AGN Privon NA 12-m 6
02:39:48 2017.A.00056.S PCSS2E_8_f_06_7M The nature of Planck compact sources at 353 microns Mroczkowski EU 7-m 6
02:57:13 2017.1.00759.S ESO148-I_a_06_TM1 Probing the onset of feedback - vibrationally excited HCN in pre-outflow ULIRGs Aalto EU 12-m 6
03:07:15 2017.A.00056.S PCSS2E_8_k_06_7M The nature of Planck compact sources at 353 microns Mroczkowski EU 7-m 6
03:34:23 2017.A.00056.S PCSS2_85_b_06_7M The nature of Planck compact sources at 353 microns Mroczkowski EU 7-m 6
03:34:51 2017.A.00054.S NGC_346_c_06_TP ACA Observatory Project: SMC Band 6 CO and continuum mapping Agliozzo EU Total Power 6
04:01:45 2017.A.00056.S PCSS2_85_k_06_7M The nature of Planck compact sources at 353 microns Mroczkowski EU 7-m 6
04:11:59 2017.1.00123.S W0149+23_a_06_TM1 The interstellar medium of Hot Dust Obscured Galaxies at z = 3.1-3.6 Knudsen EU 12-m 6
04:33:27 2017.A.00056.S PCSS2E_8_v_06_7M The nature of Planck compact sources at 353 microns Mroczkowski EU 7-m 6
04:59:57 2017.A.00056.S PCSS2E_8_t_06_7M The nature of Planck compact sources at 353 microns Mroczkowski EU 7-m 6
05:25:14 2017.1.01081.S HE0230_a_06_TM1 Probing the Molecular Gas Dynamics of High-z Quasar Hosts on Sub-kpc Scales Leung EU 12-m 6
05:26:44 2017.A.00056.S PCSS2_85_c_06_7M The nature of Planck compact sources at 353 microns Mroczkowski EU 7-m 6
05:50:49 2017.1.01078.S Per-emb-_a_06_TM1 Doubling the Number of Class 0 and I Segura-Cox Disks Through ALMA Line Observations of Perseus Disk Candidates NA 12-m 6
05:58:46 2017.A.00054.S NGC_346_c_06_TP ACA Observatory Project: SMC Band 6 CO and continuum mapping Agliozzo EU Total Power 6
06:28:53 2017.1.01350.S IRAS4B_a_06_7M Imaging protostellar outflows - building a bridge between ALMA and JWST Tychoniec EU 7-m 6
07:06:23 2017.1.01078.S Per-emb-_a_06_TM1 Doubling the Number of Class 0 and I Segura-Cox Disks Through ALMA Line Observations of Perseus Disk Candidates NA 12-m 6
07:10:53 2017.1.01019.S LDN1448I_a_03_TP Feeding Gravitationally Unstable Disks: The kinematics of the Envelope Around L1448 IRS3B Reynolds NA Total Power 3
07:53:39 2017.A.00056.S PCSS2E_8_p_06_7M The nature of Planck compact sources at 353 microns Mroczkowski EU 7-m 6
08:21:40 2017.1.01425.S 3C_120_a_06_TM1 Probing the magneto-ionic medium at Savolainen the jet base in AGN through Faraday rotation NA 12-m 6
08:25:23 2017.A.00056.S PCSS2E_8_z_06_7M The nature of Planck compact sources at 353 microns Mroczkowski EU 7-m 6
09:25:11 2017.1.01353.S OMC-1_Re_c_06_7M Fragmentation in the Orion Integral Shaped Filament Takahashi EA 7-m 6
09:52:04 2017.1.01425.S 3C_120_a_06_TM1 Probing the magneto-ionic medium at Savolainen the jet base in AGN EU 12-m 6
<table>
<thead>
<tr>
<th>Time 1</th>
<th>Time 2</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:11:43</td>
<td>11:41:51</td>
<td>HOPS-156_a_06_TP</td>
<td>Evolution of outflow-envelope interactions in low-mass protostars</td>
</tr>
<tr>
<td>10:55:37</td>
<td>12:01:49</td>
<td>3C_120_a_06_TM1</td>
<td>Probing the magneto-ionic medium at the jet base in AGN through Faraday rotation</td>
</tr>
</tbody>
</table>