2018-11-05

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>20:15:15</td>
<td>21:33:45</td>
<td>2018.1.01205.L</td>
<td>IRS63_a_06_7M</td>
<td>Fifti AU STudy of the chemistry in the Yamamoto disk/envelope system of Solar-like protostars (FAUST)</td>
<td>EA EU NA</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>22:40:10</td>
<td>23:56:58</td>
<td>2017.1.00687.S</td>
<td>G035.39_a_03_7M</td>
<td>From filaments to cores: Dynamics in infrared dark clouds</td>
<td>Barnes</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>23:32:26</td>
<td>00:37:21</td>
<td>2018.1.01427.L</td>
<td>SSA22-z3_a_03_TM1</td>
<td>A CO and dust emission search for a Inoue counterpart galaxy associating with a z=3.3 DLA found in a galaxy spectrum</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>23:57:06</td>
<td>01:24:36</td>
<td>2018.1.01115.S</td>
<td>Tile_092_a_06_7M</td>
<td>A Large Unbiased and Complete Survey of CO in the Small Magellanic Cloud</td>
<td>Jameson</td>
<td>OTHER</td>
<td>7-m</td>
<td>6</td>
</tr>
</tbody>
</table>

2018-11-06

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:20:45</td>
<td>02:30:24</td>
<td>2018.1.01319.S</td>
<td>N83_i_06_TP</td>
<td>ACA Survey of Star-forming Molecular Johnson Clouds in the SMC</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>01:37:32</td>
<td>03:05:06</td>
<td>2018.1.01115.S</td>
<td>Tile_054_a_06_7M</td>
<td>A Large Unbiased and Complete Survey of CO in the Small Magellanic Cloud</td>
<td>Jameson</td>
<td>OTHER</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>02:01:03</td>
<td>02:53:41</td>
<td>2018.1.00321.S</td>
<td>J0109-03_a_05_TM1</td>
<td>A survey of 183 GHz water megamasers in nearby AGN</td>
<td>Pesce</td>
<td>NA</td>
<td>12-m</td>
<td>5</td>
</tr>
<tr>
<td>02:30:30</td>
<td>03:40:04</td>
<td>2018.1.01319.S</td>
<td>N83_i_06_TP</td>
<td>ACA Survey of Star-forming Molecular Johnson Clouds in the SMC</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>02:55:00</td>
<td>03:40:38</td>
<td>2018.1.00538.S</td>
<td>J0042.9-b_06_TM1</td>
<td>ALMA-BASS: CND-scale molecular gas survey toward nearby luminous AGNs selected with the Swift-BAT hard X-ray survey</td>
<td>Izumi</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>03:05:14</td>
<td>04:32:40</td>
<td>2018.1.01115.S</td>
<td>Tile_057_a_06_7M</td>
<td>A Large Unbiased and Complete Survey of CO in the Small Magellanic Cloud</td>
<td>Jameson</td>
<td>OTHER</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>03:40:45</td>
<td>04:45:04</td>
<td>2018.1.01521.S</td>
<td>UVUDF224_a_03_TM2</td>
<td>The first kpc-scale map of the cold molecular ISM in a z=1.1 main sequence galaxy</td>
<td>Hygate</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>03:41:09</td>
<td>05:03:46</td>
<td>2018.1.00756.S</td>
<td>MC02_a_06_TP</td>
<td>A comprehensive survey to study the evolution of high-density cores in Taurus</td>
<td>Tachihara</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>04:32:49</td>
<td>06:00:16</td>
<td>2018.1.01115.S</td>
<td>Tile_015_a_06_7M</td>
<td>A Large Unbiased and Complete Survey of CO in the Small Magellanic Cloud</td>
<td>Jameson</td>
<td>OTHER</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>04:45:12</td>
<td>05:49:27</td>
<td>2018.1.01521.S</td>
<td>UVUDF224_a_03_TM2</td>
<td>The first kpc-scale map of the cold molecular ISM in a z=1.1 main sequence galaxy</td>
<td>Hygate</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>05:04:56</td>
<td>06:33:26</td>
<td>2018.1.00744.S</td>
<td>HOPS-355_a_06_TP</td>
<td>Evolution of outflow-envelope interactions in low-mass protostars</td>
<td>Arce</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>05:50:47</td>
<td>06:19:21</td>
<td>2018.1.00115.S</td>
<td>J0437+20_a_03_TM1</td>
<td>Anticenter Dark Neutral Matter</td>
<td>Liszt</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>06:00:32</td>
<td>07:25:28</td>
<td>2018.1.00744.S</td>
<td>HOPS-11_a_06_7M</td>
<td>Evolution of outflow-envelope interactions in low-mass protostars</td>
<td>Arce</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>06:20:33</td>
<td>07:00:47</td>
<td>2018.1.00115.S</td>
<td>J0438+30_a_03_TM1</td>
<td>Anticenter Dark Neutral Matter</td>
<td>Liszt</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>06:33:33</td>
<td>08:03:45</td>
<td>2018.1.00744.S</td>
<td>HOPS-355_a_06_TP</td>
<td>Evolution of outflow-envelope interactions in low-mass protostars</td>
<td>Arce</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>07:02:46</td>
<td>08:07:02</td>
<td>2018.1.01521.S</td>
<td>UVUDF224_a_03_TM2</td>
<td>The first kpc-scale map of the cold molecular ISM in a z=1.1 main sequence galaxy</td>
<td>Hygate</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>08:04:35</td>
<td>08:56:54</td>
<td>2018.1.00744.S</td>
<td>HOPS-355_a_06_TP</td>
<td>Evolution of outflow-envelope interactions in low-mass protostars</td>
<td>Arce</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>08:08:42</td>
<td>09:21:01</td>
<td>2018.1.01305.S</td>
<td>sdp17b_a_05_TM1</td>
<td>Resolving stellar IMF and evolution modes in dusty starbursts at high redshift</td>
<td>Zhang</td>
<td>EU</td>
<td>12-m</td>
<td>5</td>
</tr>
</tbody>
</table>
properties in different local conditions

Testing protostellar dust polarization

Clumps Symmetric to Sgr A*

Perfect Twins? Excited Molecular Gas

The Chemistry of Planet Formation

low CO freeze out: a chemical puzzle

Highly deuterated starless cores with chemistry

hydrogen in diffuse interstellar

ALMA-SPONGE: the role of neutral gas in GMCs

common high-redshift radio galaxies

Molecular gas content of the most massive star-forming regions?

How is the mass assembled in high-mass star-forming regions?

How is the mass assembled in high-mass star-forming regions?

The Shape of Water: Dissecting the ISM in high-redshift dusty starbursts

Extra-planar & Diffuse Molecular Gas in Spiral Galaxies

CON-quest: Finding the most obscured galaxy nuclei

Intensity Mapping of High Redshift Molecular Gas at 3mm

Extra-planar & Diffuse Molecular Gas in Spiral Galaxies

The Shape of Water: Dissecting the ISM in high-redshift dusty starbursts with luminous water emission lines

Adjusting the Reception of The Antennae: A Clear Look at GMCs in a Major Merger

Phosphorus-bearing molecules towards a Solar-system precursor

How is the mass assembled in high-mass star-forming regions?

How is the mass assembled in high-mass star-forming regions?

Molecular gas content of the most common high-redshift dusty radio galaxies

ALMA-SPONGE: the role of neutral hydrogen in diffuse interstellar chemistry

Highly deuterated starless cores with low CO freeze out: a chemical puzzle

The Chemistry of Planet Formation

Testing protostellar dust polarization properties in different local conditions

Perfect Twins? Excited Molecular Gas

Clumps Symmetric to Sgr A*

Perfect Twins? Excited Molecular Gas

Clumps Symmetric to Sgr A*

Perfect Twins? Excited Molecular Gas

Clumps Symmetric to Sgr A*
2018-11-07

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:19:00</td>
<td>01:46:44</td>
<td>2018.1.01115.S</td>
<td>Tile_075_a_06_7M</td>
<td>A Large Unbiased and Complete Survey of CO in the Small Magellanic Cloud</td>
<td>Jameson</td>
<td>OTHER</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>00:41:36</td>
<td>02:03:25</td>
<td>2018.1.00333.S</td>
<td>W2246-05_a_07_TM1</td>
<td>Mapping the Dynamics of a Multiphase System at z = 4.6</td>
<td>Diaz-Santos</td>
<td>CL</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>01:01:07</td>
<td>02:10:45</td>
<td>2018.1.01319.S</td>
<td>N83_i_06_TP</td>
<td>ACA Survey of Star-forming Molecular Johnson Clouds in the SMC</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>02:03:32</td>
<td>03:17:48</td>
<td>2018.1.00058.S</td>
<td>sp12349_a_07_TM1</td>
<td>A unique and massive z=4.3 protocluster from the South Pole Telescope 2500 deg^2 survey.</td>
<td>Chapman</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>02:17:44</td>
<td>03:45:25</td>
<td>2018.1.01115.S</td>
<td>Tile_063_a_06_7M</td>
<td>A Large Unbiased and Complete Survey of CO in the Small Magellanic Cloud</td>
<td>Jameson</td>
<td>OTHER</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>03:45:33</td>
<td>05:03:37</td>
<td>2018.1.01205.L</td>
<td>NGC1333_b_06_7M</td>
<td>Fifty AU Study of the chemistry in the Yamamoto disk/envelope system of Solar-like protostars (FAUST)</td>
<td>EA EU NA</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>04:16:09</td>
<td>06:14:10</td>
<td>2018.1.01532.S</td>
<td>HH30_a_06_TM1</td>
<td>Magnetic field study of the disk and outflow of HH30</td>
<td>Louvet</td>
<td>CL</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>05:03:46</td>
<td>06:28:30</td>
<td>2018.1.00744.S</td>
<td>HOPS-11_a_06_7M</td>
<td>Evolution of outflow-envelope interactions in low-mass protostars</td>
<td>Arce</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>08:32:47</td>
<td>09:45:50</td>
<td>2018.1.00081.S</td>
<td>AzTEC-1_a_06_TM1</td>
<td>The first measurement of a metallicity gradient in a dust-obscured galaxy at z=4</td>
<td>Tadaki</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>09:45:57</td>
<td>10:58:32</td>
<td>2018.1.00081.S</td>
<td>AzTEC-1_a_06_TM1</td>
<td>The first measurement of a metallicity gradient in a dust-obscured galaxy at z=4</td>
<td>Tadaki</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>11:07:13</td>
<td>12:07:26</td>
<td>2018.1.01767.S</td>
<td>J0958+14_a_07_TM1</td>
<td>Quasar Feedback Survey: establishing the impact of radio jets on typical AGN hosts via sub-kpc molecular gas imaging</td>
<td>Thomson</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>12:13:55</td>
<td>12:49:48</td>
<td>2018.1.00966.S</td>
<td>NCv1.143_a_06_TM1</td>
<td>Tracing cosmic-ray ionization rates and fluxes in sub-mm galaxies out to z=6</td>
<td>Indriolo</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>12:49:56</td>
<td>13:54:38</td>
<td>2018.1.00699.S</td>
<td>IRAS_F14_a_06_TM1</td>
<td>Resolving Massive Molecular Outflows in a Representative Disk of M83</td>
<td>Pereira Santaella</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
</tbody>
</table>
2018-11-08

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:26:10</td>
<td>02:30:38</td>
<td>2018.1.01305.S</td>
<td>Eyelash_a_05_TM1</td>
<td>Resolving stellar IMF and evolution modes in dusty starbursts at high redshift</td>
<td>Zhang</td>
<td>EU</td>
<td>12-m</td>
<td>5</td>
</tr>
<tr>
<td>02:30:52</td>
<td>03:49:13</td>
<td>2018.1.01812.S</td>
<td>MACS0257_a_07_TM1</td>
<td>Deep [C II] Imaging of a Strongly-Lensed SMG-LBG pair at z=4.7</td>
<td>Egami</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>03:40:02</td>
<td>05:07:32</td>
<td>2018.1.01115.S</td>
<td>Tile_030_a_06_7M</td>
<td>A Large Unbiased and Complete Survey of CO in the Small Magellanic Cloud</td>
<td>Jameson</td>
<td>OTHER</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>03:40:57</td>
<td>05:03:42</td>
<td>2018.1.00756.S</td>
<td>MC02_a_06_TP</td>
<td>A comprehensive survey to study the evolution of high-density cores in Taurus</td>
<td>Tachihara</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>03:53:37</td>
<td>05:08:59</td>
<td>2017.1.01562.S</td>
<td>DG_Tau_a_05_TM1</td>
<td>Water emission from the T Tauri star DG Tau: disk or outflow?</td>
<td>Podio</td>
<td>EU</td>
<td>12-m</td>
<td>5</td>
</tr>
<tr>
<td>05:07:41</td>
<td>06:32:07</td>
<td>2018.1.00744.S</td>
<td>HOPS-11-a_06_7M</td>
<td>Evolution of outflow-envelope interactions in low-mass protostars</td>
<td>Arce</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>05:17:56</td>
<td>06:32:26</td>
<td>2017.1.01562.S</td>
<td>DG_Tau_a_05_TM1</td>
<td>Water emission from the T Tauri star DG Tau: disk or outflow?</td>
<td>Podio</td>
<td>EU</td>
<td>12-m</td>
<td>5</td>
</tr>
<tr>
<td>06:34:29</td>
<td>07:41:20</td>
<td>2018.1.00532.S</td>
<td>GG_Tau_a_06_TM1</td>
<td>GG Tau ring: Dust trap or not Dust trap, that is the question...</td>
<td>Denis Alpizar</td>
<td>CL</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>07:44:01</td>
<td>08:56:04</td>
<td>2018.1.00081.S</td>
<td>AzTEC-1-a_06_TM1</td>
<td>The first measurement of a metallicity gradient in a dust-obscured galaxy at z=4</td>
<td>Tadaki</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>07:57:00</td>
<td>09:16:42</td>
<td>2018.1.00744.S</td>
<td>HOPS-11-a_06_7M</td>
<td>Evolution of outflow-envelope interactions in low-mass protostars</td>
<td>Arce</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>08:57:40</td>
<td>09:56:56</td>
<td>2018.1.01767.S</td>
<td>J0958+14_a_07_TM1</td>
<td>Quasar Feedback Survey: establishing the impact of radio jets on typical AGN hosts via sub-kpc molecular gas imaging</td>
<td>Thomson</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>----</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>00:01:45</td>
<td>01:29:24</td>
<td>2018.1.01115.S</td>
<td>Tile_026_a_06_7M</td>
<td>A Large Unbiased and Complete Survey of CO in the Small Magellanic Cloud</td>
<td>Jameson</td>
<td>OTHER</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>11:02:40</td>
<td>11:57:40</td>
<td>2017.1.01516.S</td>
<td>BRI1202-a_05_TM1</td>
<td>Water, water everywhere, Nor a drop to drink; Solving the riddle of the most luminous water emitters known</td>
<td>Lehnert</td>
<td>EU</td>
<td>12-m</td>
<td>5</td>
</tr>
<tr>
<td>11:16:04</td>
<td>12:40:51</td>
<td>2018.1.00612.S</td>
<td>NOM2005-a_06_7M</td>
<td>Core mass function in metal-poor environments</td>
<td>Izumi</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>12:16:43</td>
<td>13:08:52</td>
<td>2018.1.00321.S</td>
<td>IC_2560_a_05_TM1</td>
<td>A survey of 183 GHz water masers in nearby AGN</td>
<td>Pesce</td>
<td>NA</td>
<td>12-m</td>
<td>5</td>
</tr>
<tr>
<td>12:45:04</td>
<td>14:10:03</td>
<td>2018.1.01050.S</td>
<td>NGC4565_b_06_7M</td>
<td>Heavily Resolving The Molecular Gas Ulomo Layer in a Prototype of Edge-on Galaxies: NGC 4565</td>
<td>NA</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>13:09:00</td>
<td>14:14:06</td>
<td>2018.1.00874.S</td>
<td>S2COS.07_b_03_TM1</td>
<td>The redshifts of the most distant dusty Oreo starbursts</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>17:13:49</td>
<td>18:03:49</td>
<td>2018.1.01533.S</td>
<td>NVSS-J14-a_04_TM1</td>
<td>Molecule gas content of the most common high-redshift radio galaxies</td>
<td>Nesvadba</td>
<td>EU</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>18:08:10</td>
<td>19:46:57</td>
<td>2018.1.01639.S</td>
<td>Oph-C-N-a_07_TP</td>
<td>Highly deuterated starless cores with low CO freeze out: a chemical puzzle</td>
<td>Punanova</td>
<td>EU</td>
<td>Total Power</td>
<td>7</td>
</tr>
<tr>
<td>18:36:09</td>
<td>19:26:17</td>
<td>2018.1.01533.S</td>
<td>NVSS-J14-a_04_TM1</td>
<td>Molecular gas content of the most common high-redshift radio galaxies</td>
<td>Nesvadba</td>
<td>EU</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>19:56:10</td>
<td>21:36:11</td>
<td>2018.1.01639.S</td>
<td>Oph-C-N-a_07_7M</td>
<td>Highly deuterated starless cores with low CO freeze out: a chemical puzzle</td>
<td>Punanova</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>23:05:59</td>
<td>00:10:36</td>
<td>2018.1.01305.S</td>
<td>Eyelash-a_05_TM1</td>
<td>Resolving stellar IMF and evolution modes in dusty starbursts at high redshift</td>
<td>Zhang</td>
<td>EU</td>
<td>12-m</td>
<td>5</td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>--</td>
<td>-------------</td>
<td>-----------</td>
<td>------------------</td>
<td>------</td>
</tr>
<tr>
<td>00:13:37</td>
<td>01:18:18</td>
<td>2018.1.01305.S</td>
<td>Eyelash_a_05_TM1</td>
<td>Resolving stellar IMF and evolution modes in dusty starbursts at high redshift</td>
<td>Zhang EU</td>
<td>Total Power</td>
<td>12-m</td>
<td>5</td>
</tr>
<tr>
<td>00:59:50</td>
<td>02:09:00</td>
<td>2018.1.01319.S</td>
<td>N83_j_06_TP</td>
<td>ACA Survey of Star-forming Molecular Johnson Clouds in the SMC</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>03:16:30</td>
<td>04:45:00</td>
<td>2018.1.00756.S</td>
<td>MC02_a_06_TP</td>
<td>A comprehensive survey to study the evolution of high-density cores in Taurus</td>
<td>Tachihara EA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>03:18:00</td>
<td>04:41:31</td>
<td>2018.1.01438.S</td>
<td>I1448-mm_a_07_TM1</td>
<td>Where does high-velocity water emission originate in protostellar systems?</td>
<td>Kristensen EU</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>03:18:26</td>
<td>04:45:46</td>
<td>2018.1.01115.S</td>
<td>Tile_044_a_06_7M</td>
<td>A Large Unbiased and Complete Survey of CO in the Small Magellanic Cloud</td>
<td>Jameson OTHER</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>04:43:10</td>
<td>05:36:24</td>
<td>2018.1.00321.S</td>
<td>NGC_1068_a_05_TM1</td>
<td>A survey of 183 GHz water megamasers in nearby AGN</td>
<td>Pesce NA</td>
<td>12-m</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>04:45:08</td>
<td>06:07:25</td>
<td>2018.1.00756.S</td>
<td>MC02_a_06_TP</td>
<td>A comprehensive survey to study the evolution of high-density cores in Taurus</td>
<td>Tachihara EA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>05:31:51</td>
<td>06:57:02</td>
<td>2018.1.00744.S</td>
<td>HOPS-11_a_06_7M</td>
<td>Evolution of outflow-envelope interactions in low-mass protostars</td>
<td>Arce NA</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>05:53:55</td>
<td>07:26:09</td>
<td>2018.1.00717.S</td>
<td>SN_1987A_a_09_TM1</td>
<td>High angular resolution molecular and Matsuura dust images of Supernova 1987A</td>
<td>EU</td>
<td>12-m</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>07:46:34</td>
<td>08:26:45</td>
<td>2018.1.00763.S</td>
<td>R_Lep_b_10_TM1</td>
<td>HCN laser lines as beacons for highest resolution imaging</td>
<td>Wong EU</td>
<td>12-m</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>08:26:52</td>
<td>09:06:18</td>
<td>2018.1.00763.S</td>
<td>CQ_Pyx_b_10_TM1</td>
<td>HCN laser lines as beacons for highest resolution imaging</td>
<td>Wong EU</td>
<td>12-m</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>09:37:39</td>
<td>10:17:16</td>
<td>2018.1.00763.S</td>
<td>X_Vel_b_10_TM1</td>
<td>HCN laser lines as beacons for highest resolution imaging</td>
<td>Wong EU</td>
<td>12-m</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10:57:42</td>
<td>12:14:30</td>
<td>2018.1.00616.S</td>
<td>MACS1149_a_07_TM1</td>
<td>Anatomy of a spectroscopically-confirmed lensed galaxy at z=3.11</td>
<td>Hashimoto EA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>20:04:50</td>
<td>21:36:49</td>
<td>2018.1.01639.S</td>
<td>Oph-C-N_a_07_TP</td>
<td>Highly deuterated starless cores with low CO freeze out: a chemical puzzle</td>
<td>Punanova EU</td>
<td>Total Power</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>20:05:16</td>
<td>21:45:12</td>
<td>2018.1.01639.S</td>
<td>Oph-C-N_a_07_7M</td>
<td>Highly deuterated starless cores with low CO freeze out: a chemical puzzle</td>
<td>Punanova EU</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>22:26:21</td>
<td>23:44:33</td>
<td>2018.1.01780.S</td>
<td>W49B_a_06_7M</td>
<td>Detailed observations of molecular cloud toward the peculiar supernova remnant W49B</td>
<td>Yoshiike EA</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>22:28:03</td>
<td>23:46:26</td>
<td>2018.1.00699.S</td>
<td>IRAS_200_a_05_TM1</td>
<td>Resolving Massive Molecular Outflows in a Representative Sample of Local ULIRGs</td>
<td>Pereira Santaella EU</td>
<td>12-m</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>23:34:41</td>
<td>01:12:14</td>
<td>2018.1.01115.S</td>
<td>Tile_049_a_06_7M</td>
<td>A Large Unbiased and Complete Survey of CO in the Small Magellanic Cloud</td>
<td>Jameson OTHER</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>23:46:31</td>
<td>00:51:11</td>
<td>2018.1.01305.S</td>
<td>Eyelash_a_05_TM1</td>
<td>Resolving stellar IMF and evolution modes in dusty starbursts at high redshift</td>
<td>Zhang EU</td>
<td>12-m</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

2018-11-10
<table>
<thead>
<tr>
<th>Time</th>
<th>T ID</th>
<th>RA</th>
<th>DEC</th>
<th>Source</th>
<th>Collaborator</th>
<th>Telescope</th>
<th>Basin</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>23:38:03</td>
<td>05:01:26</td>
<td>2018.1.00966.S</td>
<td>NGC1386_a_06_TP</td>
<td>MAGNUM FEAR: mind the gap</td>
<td>Carniani</td>
<td>EU</td>
<td>NA</td>
<td>Total Power 6</td>
</tr>
<tr>
<td>03:38:45</td>
<td>04:51:59</td>
<td>2018.1.01222.S</td>
<td>49_Cet_a_07_TM1</td>
<td>Measuring the Mean Molecular Weight of Gas in Debris Disks</td>
<td>Hughes</td>
<td>NA</td>
<td>OTHER</td>
<td>Total Power 7</td>
</tr>
<tr>
<td>05:01:33</td>
<td>06:24:05</td>
<td>2018.1.00756.S</td>
<td>MC02_a_06_TP</td>
<td>A comprehensive survey to study the evolution of high-density cores in Taurus</td>
<td>Tachihara</td>
<td>EA</td>
<td>OTHER</td>
<td>Total Power 6</td>
</tr>
<tr>
<td>06:24:12</td>
<td>07:41:48</td>
<td>2018.1.00612.S</td>
<td>NOM2005-_a_06_TP</td>
<td>Core mass function in metal-poor environments</td>
<td>Izumi</td>
<td>EA</td>
<td>OTHER</td>
<td>Total Power 6</td>
</tr>
<tr>
<td>06:55:51</td>
<td>08:30:30</td>
<td>2018.1.01532.S</td>
<td>HH30_a_06_TM1</td>
<td>Magnetic field study of the disk and outflow of HH30</td>
<td>Louvet</td>
<td>CL</td>
<td>OTHER</td>
<td>Total Power 6</td>
</tr>
<tr>
<td>07:41:55</td>
<td>08:59:08</td>
<td>2018.1.00612.S</td>
<td>NOM2005-_a_06_TP</td>
<td>Core mass function in metal-poor environments</td>
<td>Izumi</td>
<td>NA</td>
<td>OTHER</td>
<td>Total Power 6</td>
</tr>
<tr>
<td>08:30:36</td>
<td>09:30:46</td>
<td>2018.1.01767.S</td>
<td>J0958+14_a_07_TM1</td>
<td>Quasar Feedback Survey: establishing the impact of radio jets on typical AGN hosts via sub-kpc molecular gas imaging</td>
<td>Thomson</td>
<td>EU</td>
<td>OTHER</td>
<td>Total Power 7</td>
</tr>
<tr>
<td>09:59:15</td>
<td>10:17:57</td>
<td>2018.1.00612.S</td>
<td>NOM2005-_a_06_TP</td>
<td>Core mass function in metal-poor environments</td>
<td>Izumi</td>
<td>EA</td>
<td>OTHER</td>
<td>Total Power 6</td>
</tr>
<tr>
<td>09:59:53</td>
<td>10:27:51</td>
<td>2018.1.00992.S</td>
<td>cid_1143_a_07_TM1</td>
<td>A SUPER spatially-resolved assessment of the impact of AGN-driven outflows</td>
<td>Harrison</td>
<td>EU</td>
<td>OTHER</td>
<td>Total Power 7</td>
</tr>
<tr>
<td>11:43:00</td>
<td>12:23:17</td>
<td>2018.1.01236.S</td>
<td>NGC4945_a_07_TP</td>
<td>Resolving the Super Star Clusters in the Nuclear Starburst of NGC 4945</td>
<td>Leroy</td>
<td>NA</td>
<td>OTHER</td>
<td>Total Power 7</td>
</tr>
<tr>
<td>14:19:21</td>
<td>14:45:13</td>
<td>2018.1.01344.S</td>
<td>NGC_5734_a_06_TM1</td>
<td>CON-quest: Finding the most obscured galaxy nuclei</td>
<td>Aalto</td>
<td>EU</td>
<td>OTHER</td>
<td>Total Power 6</td>
</tr>
<tr>
<td>14:45:43</td>
<td>16:03:20</td>
<td>2018.1.00443.S</td>
<td>G332.604_a_06_7M</td>
<td>How is the mass assembled in high-mass star-forming regions?</td>
<td>Traficante</td>
<td>EU</td>
<td>OTHER</td>
<td>Total Power 7</td>
</tr>
<tr>
<td>15:05:10</td>
<td>15:57:14</td>
<td>2018.1.01201.S</td>
<td>RU_Lup_a_06_TM1</td>
<td>The origin of large-scale gas spirals around a T Tauri star</td>
<td>Huang</td>
<td>NA</td>
<td>OTHER</td>
<td>Total Power 6</td>
</tr>
<tr>
<td>15:19:45</td>
<td>16:04:54</td>
<td>2018.1.01236.S</td>
<td>NGC4945_a_07_TP</td>
<td>Resolving the Super Star Clusters in the Nuclear Starburst of NGC 4945</td>
<td>Leroy</td>
<td>NA</td>
<td>OTHER</td>
<td>Total Power 7</td>
</tr>
<tr>
<td>23:03:32</td>
<td>00:08:04</td>
<td>2018.1.01319.S</td>
<td>WingSF_a_06_TP</td>
<td>ACSA Survey of Star-forming Molecular Johnson Clouds in the SMC</td>
<td>Jameson</td>
<td>OTHER</td>
<td>OTHER</td>
<td>Total Power 6</td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>---</td>
<td>-----------------</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>00:08:12</td>
<td>01:13:48</td>
<td>2018.1.01319.S</td>
<td>WingSF_a_06_TP</td>
<td>ACA Survey of Star-forming Molecular Clouds in the SMC</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>01:02:20</td>
<td>02:01:29</td>
<td>2018.1.00828.S</td>
<td>ES1_x_0_a_06_TM1</td>
<td>Feeding the Beasts: Investigating the Merger-Induced Growth of Star-bursting BCGs from 0.7<z<1.7</td>
<td>Noble</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:11:15</td>
<td>03:24:47</td>
<td>2018.1.00058.S</td>
<td>sp12349_a_07_TM1</td>
<td>A unique and massive z=4.3 protocluster from the South Pole Telescope 2500 deg^2 survey.</td>
<td>Chapman</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>02:33:22</td>
<td>03:40:38</td>
<td>2018.1.01319.S</td>
<td>WingSF_a_06_TP</td>
<td>ACA Survey of Star-forming Molecular Clouds in the SMC</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>03:24:54</td>
<td>04:24:54</td>
<td>2018.1.00828.S</td>
<td>XMM_z_0_a_06_TM1</td>
<td>Feeding the Beasts: Investigating the Merger-Induced Growth of Star-bursting BCGs from 0.7<z<1.7</td>
<td>Noble</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>03:40:45</td>
<td>05:03:23</td>
<td>2018.1.00756.S</td>
<td>MC02_a_06_TP</td>
<td>A comprehensive survey to study the evolution of high-density cores in Taurus</td>
<td>Tachihara</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>04:25:01</td>
<td>05:38:28</td>
<td>2017.1.00696.S</td>
<td>ST6_a_06_TM1</td>
<td>Do organic molecules exist in the Large Magellanic Cloud?</td>
<td>Schilke</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>05:04:29</td>
<td>06:26:36</td>
<td>2018.1.00756.S</td>
<td>MC02_a_06_TP</td>
<td>A comprehensive survey to study the evolution of high-density cores in Taurus</td>
<td>Tachihara</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>05:38:34</td>
<td>06:51:26</td>
<td>2017.1.00696.S</td>
<td>ST6_a_06_TM1</td>
<td>Do organic molecules exist in the Large Magellanic Cloud?</td>
<td>Schilke</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>05:58:30</td>
<td>07:23:05</td>
<td>2018.1.00744.S</td>
<td>HOPS-11_a_06_7M</td>
<td>Evolution of outflow-envelope interactions in low-mass protostars</td>
<td>Arce</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>06:27:36</td>
<td>07:45:11</td>
<td>2018.1.00612.S</td>
<td>NOM2005-_a_06_TP</td>
<td>Core mass function in metal-poor environments</td>
<td>Izumi</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>06:51:32</td>
<td>08:08:57</td>
<td>2018.1.01366.S</td>
<td>ST2_a_07_TM1</td>
<td>Unveiling chemical compositions of high-mass star-forming cores in low metallicity galaxies</td>
<td>Shimonishi</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>07:45:19</td>
<td>09:02:34</td>
<td>2018.1.00612.S</td>
<td>NOM2005-_a_06_TP</td>
<td>Core mass function in metal-poor environments</td>
<td>Izumi</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>08:09:05</td>
<td>09:21:59</td>
<td>2017.1.00696.S</td>
<td>ST6_a_06_TM1</td>
<td>Do organic molecules exist in the Large Magellanic Cloud?</td>
<td>Schilke</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>08:47:07</td>
<td>10:12:11</td>
<td>2018.1.00612.S</td>
<td>NOM2005-_a_06_7M</td>
<td>Core mass function in metal-poor environments</td>
<td>Izumi</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>09:22:06</td>
<td>10:39:27</td>
<td>2018.1.01366.S</td>
<td>ST2_a_07_TM1</td>
<td>Unveiling chemical compositions of high-mass star-forming cores in low metallicity galaxies</td>
<td>Shimonishi</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>10:12:19</td>
<td>11:37:31</td>
<td>2018.1.00612.S</td>
<td>NOM2005-_a_06_7M</td>
<td>Core mass function in metal-poor environments</td>
<td>Izumi</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>10:48:29</td>
<td>12:00:46</td>
<td>2018.1.00081.S</td>
<td>AzTEC-1_a_06_TM1</td>
<td>The first measurement of a metallicity gradient in a dust-obscured galaxy at z=4</td>
<td>Tadaki</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>13:37:53</td>
<td>15:07:22</td>
<td>2018.1.00357.S</td>
<td>3C273_a_06_TM1</td>
<td>Magnetic field and emission mechanism in relativistic jets on sub-pc and kpc scales</td>
<td>Hovatta</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>15:01:32</td>
<td>16:42:11</td>
<td>2018.1.01639.S</td>
<td>Oph-C-N_a_07_TM1</td>
<td>Highly deuterated starless cores with low CO freeze out: a chemical puzzle</td>
<td>Punanova</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>15:03:31</td>
<td>16:26:45</td>
<td>2018.1.01639.S</td>
<td>Oph-C-N_a_06_TP</td>
<td>Highly deuterated starless cores with low CO freeze out: a chemical puzzle</td>
<td>Punanova</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>15:07:29</td>
<td>16:12:23</td>
<td>2018.1.00357.S</td>
<td>3C273_a_06_TM1</td>
<td>Magnetic field and emission mechanism in relativistic jets on sub-pc and kpc scales</td>
<td>Hovatta</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>-----------------------</td>
<td>------------</td>
<td>---</td>
<td>-------------</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>00:15:20</td>
<td>01:25:40</td>
<td>2018.1.00562.S</td>
<td>Field_a_1_04_TM1</td>
<td>Gas and dust properties in an actively Hill star-forming proto-cluster</td>
<td>NA</td>
<td>EU NA</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>01:39:15</td>
<td>02:38:53</td>
<td>2018.1.00828.S</td>
<td>XMM-z_0-0_a_06_TM1</td>
<td>Feeding the Beasts: Investigating the Merger-Induced Growth of Star-bursting BCGs from 0.7<z<1.7</td>
<td>Noble</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:38:59</td>
<td>03:29:01</td>
<td>2018.1.01205.L</td>
<td>NGC1333_b_03_TM2</td>
<td>Fifty AU STudy of the chemistry in the Yamamoto disk/envelope system of Solar-like protostars (FAUST)</td>
<td>EA EU NA</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>03:29:09</td>
<td>04:18:58</td>
<td>2018.1.01205.L</td>
<td>NGC1333_b_03_TM2</td>
<td>Fifty AU STudy of the chemistry in the Yamamoto disk/envelope system of Solar-like protostars (FAUST)</td>
<td>EA EU NA</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>03:30:06</td>
<td>05:05:27</td>
<td>2018.1.00756.S</td>
<td>MC02_a_06_TPM</td>
<td>A comprehensive survey to study the evolution of high-density cores in Taurus</td>
<td>Tachihara</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>04:05:09</td>
<td>05:05:26</td>
<td>2018.1.01628.S</td>
<td>ngc253_b_05_7M</td>
<td>ALCHEMI II: Filling the Band 5 gap</td>
<td>Martin</td>
<td>7-m</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>04:19:05</td>
<td>05:08:53</td>
<td>2018.1.01205.L</td>
<td>NGC1333_a_03_TM2</td>
<td>Fifty AU STudy of the chemistry in the Yamamoto disk/envelope system of Solar-like protostars (FAUST)</td>
<td>EA EU NA</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>05:03:13</td>
<td>06:03:43</td>
<td>2018.1.00744.S</td>
<td>HOPS-11_a_06_7M</td>
<td>Evolution of outflow-envelope interactions in low-mass protostars</td>
<td>Arce</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>05:03:41</td>
<td>06:03:34</td>
<td>2018.1.00576.S</td>
<td>MC02_a_06_TPM</td>
<td>A comprehensive survey to study the evolution of high-density cores in Taurus</td>
<td>Tachihara</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>05:10:06</td>
<td>06:09:53</td>
<td>2018.1.01205.L</td>
<td>NGC1333_a_03_TM2</td>
<td>Fifty AU STudy of the chemistry in the Yamamoto disk/envelope system of Solar-like protostars (FAUST)</td>
<td>EA EU NA</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>06:01:11</td>
<td>07:06:57</td>
<td>2018.1.00556.S</td>
<td>Horsekne_a_03_TM1</td>
<td>Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: I-C3H+</td>
<td>McGuire</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>07:09:02</td>
<td>08:18:26</td>
<td>2018.1.01577.S</td>
<td>Red_Rect_a_04_TM1</td>
<td>Searching for PAHs in the Red Rectangle</td>
<td>Candian</td>
<td>12-m</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>07:26:02</td>
<td>08:52:48</td>
<td>2018.1.00612.S</td>
<td>NOM2005-a_03_7M</td>
<td>Core mass function in metal-poor environments</td>
<td>Izumi</td>
<td>7-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>08:19:33</td>
<td>09:28:30</td>
<td>2018.1.01577.S</td>
<td>Red_Rect_a_04_TM1</td>
<td>Searching for PAHs in the Red Rectangle</td>
<td>Candian</td>
<td>12-m</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>09:02:49</td>
<td>10:21:02</td>
<td>2018.1.01171.S</td>
<td>NGC_3059_a_03_TP</td>
<td>An ACA Survey of Dense Gas</td>
<td>Leroy</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>Time</td>
<td>Duration</td>
<td>Date</td>
<td>Project ID</td>
<td>Title</td>
<td>PI</td>
<td>Waveband</td>
<td>Size</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>--</td>
<td>--------</td>
<td>----------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>09:22:20</td>
<td>10:45:37</td>
<td>2018.1.01594.S</td>
<td>COSMOS_a_03_7M</td>
<td>Intensity Mapping of High Redshift Southern Galaxy Disks Molecular Gas at 3mm</td>
<td>Keating</td>
<td>NA</td>
<td>7-m</td>
<td></td>
</tr>
<tr>
<td>09:28:36</td>
<td>10:37:24</td>
<td>2018.1.01577.S</td>
<td>Red_Rect_a_04_TM1</td>
<td>Searching for PAHs in the Red Rectangle</td>
<td>Candian</td>
<td>EU</td>
<td>12-m</td>
<td></td>
</tr>
<tr>
<td>10:37:31</td>
<td>11:40:13</td>
<td>2018.1.00874.S</td>
<td>S2COS.07_d_03_TM1</td>
<td>The redshifts of the most distant dusty Oteo starbursts</td>
<td>EU</td>
<td>EU</td>
<td>12-m</td>
<td></td>
</tr>
<tr>
<td>10:45:45</td>
<td>12:04:23</td>
<td>2018.1.01594.S</td>
<td>COSMOS_a_03_7M</td>
<td>Intensity Mapping of High Redshift Molecular Gas at 3mm</td>
<td>Keating</td>
<td>NA</td>
<td>7-m</td>
<td></td>
</tr>
<tr>
<td>11:40:33</td>
<td>12:02:02</td>
<td>2018.1.01128.S</td>
<td>COSMOS-5_a_03_TM1</td>
<td>A unique test of the high-redshift baryon cycle: connecting molecular gas content and metallicity at z~2</td>
<td>Sanders</td>
<td>NA</td>
<td>12-m</td>
<td></td>
</tr>
</tbody>
</table>