<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>22:02:07</td>
<td>22:37:37</td>
<td>2018.1.00047.S</td>
<td>CW_Leo_h_06_7M</td>
<td>Monitor band-6 line variability in IRC +10216 with ALMA Compact Array (II).</td>
<td>He</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>22:38:12</td>
<td>00:03:01</td>
<td>2018.1.01851.S</td>
<td>G316.75-c_03_7M</td>
<td>The impact of O-type stars on gas dynamics: The case of the G316.75 massive-star forming ridge</td>
<td>Watkins</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>22:42:41</td>
<td>23:59:23</td>
<td>2018.1.01054.S</td>
<td>2mass_J1_a_06_TM1</td>
<td>Zooming in onto the smallest dust cavities in Lupus disks: are they similar to the large-scale equivalents?</td>
<td>van der Marel</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>00:03:08</td>
<td>00:42:21</td>
<td>2018.1.01851.S</td>
<td>G316.75-c_03_7M</td>
<td>The impact of O-type stars on gas dynamics: The case of the G316.75 massive-star forming ridge</td>
<td>Watkins</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>00:13:24</td>
<td>01:04:33</td>
<td>2018.1.00028.S</td>
<td>ISO-Oph_c_06_TM1</td>
<td>Ophiuchus Disk Survey Employing ALMA: high-resolution follow-up</td>
<td>Cieza</td>
<td>CL</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>00:55:55</td>
<td>02:20:44</td>
<td>2018.1.01851.S</td>
<td>G316.75-c_03_7M</td>
<td>The impact of O-type stars on gas dynamics: The case of the G316.75 massive-star forming ridge</td>
<td>Watkins</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>01:38:27</td>
<td>02:50:26</td>
<td>2018.A.00031.T</td>
<td>G358.93_e_06_TM1</td>
<td>Exploring the dust, thermal gas, and new methanol masers in the third massive protostellar outburst: G358.931-0.030</td>
<td>Brogan</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>04:42:59</td>
<td>05:59:20</td>
<td>2018.1.01054.S</td>
<td>2mass_J1_a_06_TM1</td>
<td>Zooming in onto the smallest dust cavities in Lupus disks: are they similar to the large-scale equivalents?</td>
<td>van der Marel</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>05:16:09</td>
<td>06:32:28</td>
<td>2018.1.00981.S</td>
<td>Northeas_a_03_7M</td>
<td>Evolutionarily Young Filamentary Region of NGC 6334</td>
<td>Xiong</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>06:32:35</td>
<td>08:15:37</td>
<td>2018.A.00046.S</td>
<td>elaiss13_a_06_7M</td>
<td>The host properties and environment of high-redshift radio galaxies with ACA</td>
<td>Messias</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>07:48:42</td>
<td>09:16:20</td>
<td>2018.1.00101.S</td>
<td>G28.5413_a_03_7M</td>
<td>The initial gas flow towards extremely young high-mass clumps</td>
<td>Feng</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>10:14:44</td>
<td>13:55:12</td>
<td>2018.A.00046.S</td>
<td>elaiss13_a_06_7M</td>
<td>The host properties and environment of high-redshift radio galaxies with ACA</td>
<td>Messias</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>12:24:56</td>
<td>14:35:52</td>
<td>2018.A.00046.S</td>
<td>MC27_b_06_TM1</td>
<td>Spatially resolved observations toward a ~10AU disk around a Very Low-Luminosity object in Taurus</td>
<td>Tokuda</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>13:04:01</td>
<td>15:29:33</td>
<td>2018.1.01766.T</td>
<td>XrayOpt_c_03_TM1</td>
<td>Observing Jets and Outflows in</td>
<td>Alexander</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
</tbody>
</table>
2019-06-20

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:16:13</td>
<td>01:41:06</td>
<td>2018.1.01851.S</td>
<td>G316.75- c_03_7M</td>
<td>The impact of O-type stars on gas dynamics: The case of the G316.75 massive-star forming ridge</td>
<td>Watkins</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>00:45:01</td>
<td>01:57:07</td>
<td>2018.1.01198.S</td>
<td>Elias_2-_a_03_TM1</td>
<td>Dust Trapping in the Substructures of Protoplanetary Disks</td>
<td>Perez</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>02:35:15</td>
<td>04:39:55</td>
<td>2018.1.01271.S</td>
<td>22_Kalli_a_06_TM1</td>
<td>M-Type Asteroids: The Remnant Core of Kleer Planetesimals?</td>
<td>NA</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>03:24:08</td>
<td>04:00:25</td>
<td>2018.A.00047.S</td>
<td>iras_193_a_03_7M</td>
<td>Shock-induced chemistry in the CSEs of late-type stars: a pilot study</td>
<td>NA</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>04:02:00</td>
<td>04:38:04</td>
<td>2018.A.00047.S</td>
<td>iras_193_b_03_7M</td>
<td>Shock-induced chemistry in the CSEs of late-type stars: a pilot study</td>
<td>NA</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>04:40:03</td>
<td>06:40:41</td>
<td>2018.1.01271.S</td>
<td>22_Kalli_a_06_TM1</td>
<td>M-Type Asteroids: The Remnant Core of Kleer Planetesimals?</td>
<td>NA</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>04:40:49</td>
<td>05:37:16</td>
<td>2018.A.00047.S</td>
<td>iras_193_e_03_7M</td>
<td>Shock-induced chemistry in the CSEs of late-type stars: a pilot study</td>
<td>NA</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>05:37:24</td>
<td>06:17:26</td>
<td>2018.A.00047.S</td>
<td>iras_193_d_03_7M</td>
<td>Shock-induced chemistry in the CSEs of late-type stars: a pilot study</td>
<td>NA</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>06:17:35</td>
<td>06:55:13</td>
<td>2018.A.00047.S</td>
<td>iras_193_c_03_7M</td>
<td>Shock-induced chemistry in the CSEs of late-type stars: a pilot study</td>
<td>NA</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>06:49:13</td>
<td>08:29:08</td>
<td>2018.1.01124.S</td>
<td>sgra_sta_a_06_TM1</td>
<td>Resolving the SgrA* Accretion Disk at 2000 Schwarzschild Radii Using H3α Recombination Line</td>
<td>Murchikova</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>08:29:21</td>
<td>09:08:50</td>
<td>2018.A.00047.S</td>
<td>RV_Aqr_a_03_7M</td>
<td>Shock-induced chemistry in the CSEs of late-type stars: a pilot study</td>
<td>NA</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>08:38:41</td>
<td>10:05:27</td>
<td>2018.1.00551.S</td>
<td>W_Aql_a_06_TM1</td>
<td>Evolved Stars and Shaping to Planetary Nebulae: the Role of SiO</td>
<td>Humphreys</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>09:08:58</td>
<td>10:39:41</td>
<td>2018.A.00046.S</td>
<td>elaiss13_a_06_7M</td>
<td>The host properties and environment of high-redshift radio galaxies with ACA</td>
<td>Messias</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>10:15:34</td>
<td>11:29:49</td>
<td>2018.1.01123.S</td>
<td>IIIZw035_a_06_TM1</td>
<td>Cold Gas Around Black Holes: Fueling and Feedback in Galaxy Mergers</td>
<td>Medling</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>10:39:49</td>
<td>12:10:17</td>
<td>2018.A.00046.S</td>
<td>elaiss13_a_06_7M</td>
<td>The host properties and environment of high-redshift radio galaxies with ACA</td>
<td>Messias</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>11:38:02</td>
<td>12:50:04</td>
<td>2018.1.01123.S</td>
<td>IIIZw035_a_06_TM1</td>
<td>Cold Gas Around Black Holes: Fueling and Feedback in Galaxy Mergers</td>
<td>Medling</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>12:41:35</td>
<td>14:12:12</td>
<td>2018.A.00046.S</td>
<td>elaiss13_a_06_7M</td>
<td>The host properties and environment of high-redshift radio galaxies with ACA</td>
<td>Messias</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>13:11:06</td>
<td>14:43:44</td>
<td>2017.1.00480.S</td>
<td>MC27_b_06_TM1</td>
<td>Spatially resolved observations toward a ~10AU disk around a Very Low-Luminosity object in Taurus</td>
<td>Tokuda</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>14:12:21</td>
<td>15:42:35</td>
<td>2018.A.00046.S</td>
<td>elaiss13_a_06_7M</td>
<td>The host properties and environment of high-redshift radio galaxies with ACA</td>
<td>Messias</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>14:50:08</td>
<td>16:24:49</td>
<td>2017.1.00480.S</td>
<td>MC27_b_06_TM1</td>
<td>Spatially resolved observations toward a ~10AU disk around a Very Low-Luminosity object in Taurus</td>
<td>Tokuda</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>---</td>
<td>-------------</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>01:07:20</td>
<td>02:32:17</td>
<td>2018.1.01851.S</td>
<td>G316.75-..c_03_7M</td>
<td>The impact of O-type stars on gas dynamics: The case of the G316.75 massive-star forming ridge</td>
<td>Watkins</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>01:16:12</td>
<td>02:07:41</td>
<td>2018.1.00028.S</td>
<td>ISO-Oph-..a_06_TM1</td>
<td>Ophiuchus Disk Survey Employing ALMA: high-resolution follow-up</td>
<td>Cieza</td>
<td>CL</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:08:41</td>
<td>03:50:33</td>
<td>2018.1.01124.S</td>
<td>sgra_sta_a_06_TM1</td>
<td>Resolving the SgrA* Accretion Disk at Murchikova 2000 Schwarzschild Radii Using H3alpha Recombination Line</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>02:32:48</td>
<td>03:49:21</td>
<td>2018.1.00981.S</td>
<td>Northeas_a_03_7M</td>
<td>Evolutionarily Young Filamentary Region of NGC 6334</td>
<td>Xiong</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>03:49:44</td>
<td>04:45:48</td>
<td>2018.1.00047.S</td>
<td>iras_195_e_03_7M</td>
<td>Shock-induced chemistry in the CSEs Cerrigone of late-type stars: a pilot study</td>
<td>Watkins</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>03:50:40</td>
<td>05:31:52</td>
<td>2018.1.01124.S</td>
<td>sgra_sta_a_06_TM1</td>
<td>Resolving the SgrA* Accretion Disk at Murchikova 2000 Schwarzschild Radii Using H3alpha Recombination Line</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>04:45:57</td>
<td>05:20:28</td>
<td>2018.1.00047.S</td>
<td>iras_195_a_03_7M</td>
<td>Shock-induced chemistry in the CSEs Cerrigone of late-type stars: a pilot study</td>
<td>Watkins</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>05:20:36</td>
<td>05:59:51</td>
<td>2018.1.00047.S</td>
<td>iras_195_d_03_7M</td>
<td>Shock-induced chemistry in the CSEs Cerrigone of late-type stars: a pilot study</td>
<td>Watkins</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>05:32:00</td>
<td>07:13:08</td>
<td>2018.1.01124.S</td>
<td>sgra_sta_a_06_TM1</td>
<td>Resolving the SgrA* Accretion Disk at Murchikova 2000 Schwarzschild Radii Using H3alpha Recombination Line</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>05:59:59</td>
<td>06:36:12</td>
<td>2018.1.00047.S</td>
<td>iras_195_b_03_7M</td>
<td>Shock-induced chemistry in the CSEs Cerrigone of late-type stars: a pilot study</td>
<td>Watkins</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>06:36:20</td>
<td>07:13:17</td>
<td>2018.1.00047.S</td>
<td>iras_195_c_03_7M</td>
<td>Shock-induced chemistry in the CSEs Cerrigone of late-type stars: a pilot study</td>
<td>Watkins</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>07:13:15</td>
<td>08:37:40</td>
<td>2018.1.01716.S</td>
<td>HD_16914_a_03_TM1</td>
<td>Thinning the rings: 3 mm observations of the multigapped disk of HD 169142</td>
<td>Macias</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>07:58:27</td>
<td>08:39:03</td>
<td>2018.1.00047.S</td>
<td>RV_Aqr_b_03_7M</td>
<td>Shock-induced chemistry in the CSEs Cerrigone of late-type stars: a pilot study</td>
<td>Watkins</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>08:39:11</td>
<td>09:20:48</td>
<td>2018.1.00047.S</td>
<td>RV_Aqr_c_03_7M</td>
<td>Shock-induced chemistry in the CSEs Cerrigone of late-type stars: a pilot study</td>
<td>Watkins</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>09:20:56</td>
<td>10:51:45</td>
<td>2018.1.00046.S</td>
<td>elaiss13_a_06_7M</td>
<td>The host properties and dynamics: The case of the G316.75 massive-star forming ridge</td>
<td>Watkins</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
</tbody>
</table>
10:51:54: 12:03:20 2018.A.00046.S elaiis11_a_06_7M The environment of high-redshift radio galaxies with ACA

22:16:29: 23:49:33 2018.I.01309.S HD100546_a_06_TM1 Tracking the 8 au orbit of a circumplanetary disk recently detected in ALMA continuum and CO kinematics

2019-06-22

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:27:03</td>
<td>01:47:56</td>
<td>2018.I.01851.S G316.75-d_03_7M The impact of O-type stars on gas dynamics: The case of the G316.75 massive-star forming ridge Watkins</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01:23:21</td>
<td>02:00:53</td>
<td>2018.I.00659.L U_Her_b_06_TM1 ATOMIUM: ALMA Tracing the Origins Decin of Molecules In dUst-forming oxygen-rich M-type stars</td>
<td>EU NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01:48:04</td>
<td>03:12:44</td>
<td>2018.I.01851.S G316.75-c_03_7M The impact of O-type stars on gas dynamics: The case of the G316.75 massive-star forming ridge Watkins</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02:03:35</td>
<td>02:25:29</td>
<td>2018.I.00088.S V4334_Sg_e_06_TM1 Observing ip process nucleosynthesis van Hoof products in V4334 Sgr</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02:40:22</td>
<td>04:01:12</td>
<td>2018.I.01198.S HD14300_a_03_TM1 Dust Trapping in the Substructures of Perez Protoplanetary Disks</td>
<td>CL</td>
<td>12-m</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03:20:25</td>
<td>04:37:13</td>
<td>2018.I.00981.S Norethas_a_03_7M Evolutionarily Young Filamentary Region of NGC 6334 Xiong</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:01:20</td>
<td>05:20:15</td>
<td>2018.I.01198.S Elia_2-a_03_TM1 Dust Trapping in the Substructures of Perez Protoplanetary Disks</td>
<td>CL</td>
<td>12-m</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:37:22</td>
<td>05:53:52</td>
<td>2018.I.00981.S Norethas_a_03_7M Evolutionarily Young Filamentary Region of NGC 6334 Xiong</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05:20:22</td>
<td>05:41:42</td>
<td>2018.I.01104.S Cygnus_A-a_03_TM1 New Light in the Dark Heart of Cygnus A Perley</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05:41:50</td>
<td>06:35:55</td>
<td>2018.I.01766.T XrayOpt-x_03_TM1 Observing Jets and Outflows in Tidal Disruption Events with ALMA Alexander</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05:54:00</td>
<td>07:10:10</td>
<td>2018.I.00981.S Norethas_a_03_7M Evolutionarily Young Filamentary Region of NGC 6334 Xiong</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:07:34</td>
<td>09:30:11</td>
<td>2018.I.00262.S G33.92+0_a_06_TM1 An Ultimately High Angular Resolution Chen Synoptic Observation for Fragmentation in an OB Cluster-Forming Molecular Clump Vogt</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:34:49</td>
<td>10:28:07</td>
<td>2018.I.01031.S SNR1E010-a_07_7M Revealing dust processing in the young supernova remnant 1E0102.2-72129 in the SMC Wang</td>
<td>OTHER</td>
<td>12-m</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:28:13</td>
<td>11:04:52</td>
<td>2018.I.00994.S NGC7469-a_08_7M CI(1-0) and CO(4-3) survey for nearbyMichiyama -40U/LIRGs-Band8ACAstand alone observation - Chen</td>
<td>EA</td>
<td>7-m</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:24:54</td>
<td>12:12:07</td>
<td>2018.I.00994.S ESO_148-b_08_7M CI(1-0) and CO(4-3) survey for nearbyMichiyama -40U/LIRGs-Band8ACA</td>
<td>EA</td>
<td>7-m</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>----</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>01:15:08</td>
<td>02:46:27</td>
<td>TYC_7851_a_06_TM1</td>
<td>Search for Inner Disk in Transitional Disks</td>
<td>Muto</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>02:46:35</td>
<td>04:19:00</td>
<td>2MASS_J1_b_06_TM1</td>
<td>Search for Inner Disk in Transitional Disks</td>
<td>Muto</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>04:19:10</td>
<td>05:48:10</td>
<td>2MASS_J1_a_06_TM1</td>
<td>Search for Inner Disk in Transitional Disks</td>
<td>Muto</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>05:48:18</td>
<td>07:14:05</td>
<td>IRAS1934_ap_06_TM1</td>
<td>Search for the Keplerian Disk in the Protostellar Object B335</td>
<td>Imai</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>07:14:13</td>
<td>07:48:53</td>
<td>G31.41+0.31_a_03_TM1</td>
<td>Dissecting the monolithic molecular core G31.41+0.31</td>
<td>Beltran</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>07:49:01</td>
<td>08:20:37</td>
<td>pi1_Gru_b_06_TM1</td>
<td>ATOMIUM: ALMA Tracing the Origins Decin of Molecules In dUST-forming oxygen-rich M-type stars</td>
<td>Muto</td>
<td>EA NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>08:20:43</td>
<td>08:53:12</td>
<td>pi1_Gru_a_06_TM1</td>
<td>ATOMIUM: ALMA Tracing the Origins Decin of Molecules In dUST-forming oxygen-rich M-type stars</td>
<td>Muto</td>
<td>EA NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>09:05:49</td>
<td>09:59:56</td>
<td>V_Psa_b_06_TM1</td>
<td>ATOMIUM: ALMA Tracing the Origins Decin of Molecules In dUST-forming oxygen-rich M-type stars</td>
<td>Muto</td>
<td>EA NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10:00:03</td>
<td>10:22:34</td>
<td>IRC+1001_ap_06_TM1</td>
<td>ATOMIUM: ALMA Tracing the Origins Decin of Molecules In dUST-forming oxygen-rich M-type stars</td>
<td>Muto</td>
<td>EA NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10:23:34</td>
<td>11:47:53</td>
<td>MRC_0152_a_06_TM1</td>
<td>The Dragonfly Galaxy: resolving feedback and star formation in a hyper-luminous AGN merger at z~2</td>
<td>Emonts</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>11:48:23</td>
<td>13:17:01</td>
<td>MRC_0152_a_06_TM1</td>
<td>The Dragonfly Galaxy: resolving feedback and star formation in a hyper-luminous AGN merger at z~2</td>
<td>Emonts</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>13:33:57</td>
<td>15:09:10</td>
<td>MC27_b_06_TM1</td>
<td>Spatially resolved observations toward a ~10AU disk around a Very Low-Luminosity object in Taurus</td>
<td>Tokuda</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>15:24:22</td>
<td>16:46:26</td>
<td>2MASSJ04_a_04_TM1</td>
<td>Revealing Sub-structures in a Very Low Mass Disk</td>
<td>Natta</td>
<td>OTHER</td>
<td>12-m</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>23:07:06</td>
<td>00:37:51</td>
<td>NGC4593_ap_06_TM1</td>
<td>How do supermassive black holes grow? Tracing gas transport in the luminous AGN NGC4593 down to the central 5pc.</td>
<td>Jahnke</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>23:34:30</td>
<td>00:21:32</td>
<td>NGC_5990_b_08_TM1</td>
<td>CI(1-0) and CO(4-3) survey for nearbyMichiyama ~40 U/LIRGs- Band8 ACA stand alone observation -</td>
<td>EA</td>
<td>7-m</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>--</td>
<td>--------------------</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>00:22:01</td>
<td>02:27:24</td>
<td>2018.1.00994.S</td>
<td>ESO_507-_a_08_7M</td>
<td>CI(1-0) and CO(4-3) survey for nearbyMichiyama ~40 U/LIRGs- Band8 ACA stand alone observation -</td>
<td>EA</td>
<td>7-m</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>00:37:59</td>
<td>02:09:22</td>
<td>2018.1.00689.S</td>
<td>EM_star_a_06_TM1</td>
<td>Search for Inner Disk in Transitional Disks</td>
<td>Muto</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:13:30</td>
<td>02:54:47</td>
<td>2018.1.00659.L</td>
<td>U_Her_c_06_TM1</td>
<td>ATOMIUM: ALMA Tracing the Origins Decin of Molecules In dUst-forming oxygen-rich M-type stars</td>
<td>EU NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>02:27:32</td>
<td>03:18:56</td>
<td>2018.1.00994.S</td>
<td>ESO_069-_b_08_7M</td>
<td>CI(1-0) and CO(4-3) survey for nearbyMichiyama ~40 U/LIRGs- Band8 ACA stand alone observation -</td>
<td>EA</td>
<td>7-m</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>02:54:56</td>
<td>03:33:53</td>
<td>2018.1.00659.L</td>
<td>U_Her_a_06_TM1</td>
<td>ATOMIUM: ALMA Tracing the Origins Decin of Molecules In dUst-forming oxygen-rich M-type stars</td>
<td>EU NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>03:20:12</td>
<td>03:53:41</td>
<td>2018.1.00994.S</td>
<td>IRASF_18_b_08_7M</td>
<td>CI(1-0) and CO(4-3) survey for nearbyMichiyama ~40 U/LIRGs- Band8 ACA stand alone observation -</td>
<td>EA</td>
<td>7-m</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>03:34:00</td>
<td>04:26:22</td>
<td>2018.1.00028.S</td>
<td>RXJ1633._a_06_TM1</td>
<td>Ophiuchus Disk Survey Employing ALMA: high-resolution follow-up</td>
<td>Cieza</td>
<td>CL</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>03:55:40</td>
<td>04:36:13</td>
<td>2018.1.00994.S</td>
<td>IC_4734_b_08_7M</td>
<td>CI(1-0) and CO(4-3) survey for nearbyMichiyama ~40 U/LIRGs- Band8 ACA stand alone observation -</td>
<td>EA</td>
<td>7-m</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>04:26:30</td>
<td>05:17:29</td>
<td>2018.1.00028.S</td>
<td>WLY_2-63_a_06_TM1</td>
<td>Ophiuchus Disk Survey Employing ALMA: high-resolution follow-up</td>
<td>Cieza</td>
<td>CL</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>04:36:21</td>
<td>05:14:04</td>
<td>2018.1.00994.S</td>
<td>ESO_069-_a_08_7M</td>
<td>CI(1-0) and CO(4-3) survey for nearbyMichiyama ~40 U/LIRGs- Band8 ACA stand alone observation -</td>
<td>EA</td>
<td>7-m</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>05:14:12</td>
<td>06:46:39</td>
<td>2018.1.01687.S</td>
<td>Ser-emb1_a_08_7M</td>
<td>Resolving the complete outflow density and kinematics structures by observing [CI] (1-0)</td>
<td>Zhang</td>
<td>EU</td>
<td>7-m</td>
<td>8</td>
</tr>
<tr>
<td>05:34:00</td>
<td>06:27:12</td>
<td>2018.1.00659.L</td>
<td>W_Aql_a_06_TM1</td>
<td>ATOMIUM: ALMA Tracing the Origins Decin of Molecules In dUst-forming oxygen-rich M-type stars</td>
<td>EU NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>06:27:19</td>
<td>07:18:48</td>
<td>2018.1.00659.L</td>
<td>W_Aql_b_06_TM1</td>
<td>ATOMIUM: ALMA Tracing the Origins Decin of Molecules In dUst-forming oxygen-rich M-type stars</td>
<td>EU NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>06:46:47</td>
<td>08:11:18</td>
<td>2018.1.01440.S</td>
<td>EP_Aqr_a_08_7M</td>
<td>A search for compact carbon emission from UV active AGB stars</td>
<td>Saberi</td>
<td>EU</td>
<td>7-m</td>
<td>8</td>
</tr>
<tr>
<td>07:18:56</td>
<td>07:38:41</td>
<td>2018.1.00659.L</td>
<td>GY_Aql_a_06_TM1</td>
<td>ATOMIUM: ALMA Tracing the Origins Decin of Molecules In dUst-forming oxygen-rich M-type stars</td>
<td>EU NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>07:38:48</td>
<td>07:58:33</td>
<td>2018.1.00659.L</td>
<td>GY_Aql_b_06_TM1</td>
<td>ATOMIUM: ALMA Tracing the Origins Decin of Molecules In dUst-forming oxygen-rich M-type stars</td>
<td>EU NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>07:58:41</td>
<td>08:55:19</td>
<td>2018.1.00659.L</td>
<td>V_PsA_a_06_TM1</td>
<td>ATOMIUM: ALMA Tracing the Origins Decin of Molecules In dUst-forming oxygen-rich M-type stars</td>
<td>EU NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>08:11:26</td>
<td>09:42:09</td>
<td>2018.1.01440.S</td>
<td>Tx_psc_a_08_7M</td>
<td>A search for compact carbon emission from UV active AGB stars</td>
<td>Saberi</td>
<td>EU</td>
<td>7-m</td>
<td>8</td>
</tr>
<tr>
<td>08:55:26</td>
<td>09:17:41</td>
<td>2018.1.00659.L</td>
<td>IRC-1052_a_06_TM1</td>
<td>ATOMIUM: ALMA Tracing the Origins Decin of Molecules In dUst-forming oxygen-rich M-type stars</td>
<td>EU NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>09:39:53</td>
<td>11:04:11</td>
<td>2018.1.00293.S</td>
<td>MRC_0152_a_06_TM1</td>
<td>The Dragonfly Galaxy: resolving feedback and star formation in a hyper-luminous AGN merger at z~2</td>
<td>Emonts</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>09:42:17</td>
<td>11:14:15</td>
<td>2018.1.00994.S</td>
<td>NGC_7771_b_08_7M</td>
<td>CI(1-0) and CO(4-3) survey for nearbyMichiyama ~40 U/LIRGs- Band8 ACA stand alone observation -</td>
<td>EA</td>
<td>7-m</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>11:05:04</td>
<td>12:34:20</td>
<td>2018.1.01135.S</td>
<td>NGC1068_a_03_TM1</td>
<td>Resolve SiO and methanol Mega-Masers in NGC 1068 by ALMA</td>
<td>Wang</td>
<td>OTHER</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>11:14:24</td>
<td>12:42:36</td>
<td>2018.1.00994.S</td>
<td>NGC_7771_a_08_7M</td>
<td>CI(1-0) and CO(4-3) survey for nearbyMichiyama ~40 U/LIRGs- Band8 ACA stand alone observation -</td>
<td>EA</td>
<td>7-m</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>