ALMA Observing Activity from 2019-10-07T17:59:00 to 2019-10-14T18:00:00
QA0 pass executions

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>18:52:19</td>
<td>20:21:18</td>
<td>2019.1.01172.S</td>
<td>ex_lup_a_06_TP</td>
<td>Mapping mass outflows in an EXor Outburst</td>
<td>Hales</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>19:56:12</td>
<td>20:21:33</td>
<td>2019.1.01742.S</td>
<td>ESO_137-_a_06_TM1</td>
<td>AGN Before and After: Towards a balanced view of the link between circumnuclear gas and nuclear black hole activity</td>
<td>Rosario</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>20:40:12</td>
<td>21:31:03</td>
<td>2019.1.01728.S</td>
<td>Gaia_17b_b_06_7M</td>
<td>Gaia 17bp: the circumstellar environment of a new FU Ori-type object</td>
<td>Cruz-Saenz de Miera</td>
<td>OTHER</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>22:01:01</td>
<td>22:23:20</td>
<td>2019.1.00768.S</td>
<td>G358.93_a_06_TM2</td>
<td>Tracking the lifetime and resolving the Brogan properties of the massive protostellar accretion outburst in G358.93-0.03</td>
<td>NA</td>
<td></td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>23:28:34</td>
<td>00:55:03</td>
<td>2019.1.01056.S</td>
<td>G26.47+0_a_06_7M</td>
<td>Looking for the missing mass in Luminous Blue Variables</td>
<td>Cerrigone</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>23:58:34</td>
<td>00:20:48</td>
<td>2019.1.01184.S</td>
<td>J1851+00_a_06_TM1</td>
<td>Clarifying CI distribution in molecular cloud by absorption observation toward compact quasars behind the Milky Way</td>
<td>Miyamoto</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
</tbody>
</table>

2019-10-08

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:09:00</td>
<td>01:36:57</td>
<td>2019.1.00663.S</td>
<td>J010312-_a_06_TM1</td>
<td>Molecular outflows in luminous gravitationally lensed galaxies at z=2-5</td>
<td>Butler</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:10:21</td>
<td>01:44:36</td>
<td>2019.1.00297.S</td>
<td>SPT0002-_a_06_7M</td>
<td>A comprehensive sample of the two [CI] lines in lensed high-redshift galaxies</td>
<td>Bethermin</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>02:53:52</td>
<td>04:32:55</td>
<td>2019.1.00203.S</td>
<td>M0138_im_a_07_7M</td>
<td>Sub-percent constraint on the molecular gas mass fraction of a massive, quenched galaxy at z=2</td>
<td>Man</td>
<td>NA</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>04:07:58</td>
<td>05:23:01</td>
<td>2019.1.00534.S</td>
<td>SMC_YSO_a_07_TM1</td>
<td>Revealing hot cores in the Small Magellanic Cloud</td>
<td>Zahorecz</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>04:33:02</td>
<td>06:07:59</td>
<td>2019.1.01182.S</td>
<td>M33_g_06_7M</td>
<td>Surveying Triangulum with the ACA: A Key Perspective on Molecular Clouds at High Resolution</td>
<td>Rosolowsky</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>07:22:21</td>
<td>08:30:44</td>
<td>2019.1.00756.S</td>
<td>HH1177_a_07_TM2</td>
<td>Resolving the first extragalactic low-metallicity high-mass protostellar disk system with ALMA</td>
<td>McLeod</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>07:29:06</td>
<td>08:57:32</td>
<td>2019.1.01718.S</td>
<td>NGC1300_a_07_TP</td>
<td>PHANGS-CMZs: Uncovering the Lifecycle of Galactic Nuclei by Mapping Extragalactic 'Central Molecular Zones'</td>
<td>Chevance</td>
<td>EU</td>
<td>Total Power</td>
<td>7</td>
</tr>
<tr>
<td>08:31:49</td>
<td>09:55:00</td>
<td>2019.1.01770.S</td>
<td>Lh01_a_07_TM1</td>
<td>The Power of Outflows in Low-Metallicity Star Formation</td>
<td>Tanaka</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>08:57:39</td>
<td>10:24:46</td>
<td>2019.1.01718.S</td>
<td>NGC1300_a_07_TP</td>
<td>PHANGS-CMZs: Uncovering the Lifecycle of Galactic Nuclei by</td>
<td>Chevance</td>
<td>EU</td>
<td>Total Power</td>
<td>7</td>
</tr>
</tbody>
</table>
Luminous Blue Variables
Looking for the missing mass in
Seyferts in the local Universe
nuclear outflows in the most luminous
Resolving the molecular tori and
isolated and clustered protostars
Doubly deuterated water toward
molecular gas
Luminous Blue Variables
Looking for the missing mass in
among the Jupiter Trojan asteroids
A search for icy collisional fragments
in Low-mass Galaxies
Balanced view of the link between
AGN Before and After: Towards a
Resolution
Arp 220 Nuclear Disks at 25 - 50 mas
Molecular Gas in Quasars
First Systematic Study of Dense
Nearby Galaxy Disks
Resolved COExcitation across
in Low-mass Galaxies
Remarkably Luminous Galaxies at z ~ 9 - 10.
[O III] 88 Line Observations of Four
Nearby Galaxy Disks
Resolved CO Excitation across
Nearby Galaxy Disks
AGN Before and After: Towards a
balanced view of the link between
circumnuclear gas and nuclear black
hole activity
Mapping Extragalactic 'Central
Molecular Zones'
Tanaka EA
12-m
7
Puschnig EU
Total Power
7
Molinari EA EU NA
7-m
6
Reuter NA
12-m
7
Puschnig EU
Total Power
7
Hashimoto EA
12-m
7
Puschnig EU
Total Power
7
Rosario EU
12-m
6
Nguyen EA
12-m
6
Puschnig EU
Total Power
7
Rosario EU
12-m
6
Bauer CL
7-m
6
Hayatsu EA
12-m
4
Puschnig EU
Total Power
7
Bauer CL
7-m
6
Scoville NA
12-m
3
Rosario EU
12-m
6
Brown NA
12-m
7
Cerrigone NA
7-m
6
Brown NA
12-m
7
Cerrigone NA
Total Power
6
Gerin EU
12-m
6
Jensen EU
12-m
7
Alonso-Herrero EU
12-m
7
Cerrigone NA
7-m
6
<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:03:47</td>
<td>01:07:20</td>
<td>G26.47+0_a_06_TP</td>
<td>Looking for the missing mass in Luminous Blue Variables</td>
<td>Cerrigone</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>00:14:54</td>
<td>01:11:32</td>
<td>G034.77-_.a_07_7M</td>
<td>The Infrared Dark Cloud G034.77-00.55 and the first fully resolved interstellar magnetised shock</td>
<td>Cosentino</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>00:48:45</td>
<td>01:58:47</td>
<td>PKS_2101_a_07_TM1</td>
<td>Probing the spectral evolution of jets with ALMA</td>
<td>Meyer</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>02:13:14</td>
<td>02:48:40</td>
<td>SPT2307-_.a_07_TM1</td>
<td>A Complete Continuum Imaging Survey of Strongly-Lensed, High-Redshift Starbursts</td>
<td>Reuter</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>02:24:21</td>
<td>04:03:08</td>
<td>M0138_im_a_07_7M</td>
<td>Sub-percent constraint on the molecular gas mass fraction of a massive, quenched galaxy at z=2</td>
<td>Man</td>
<td>NA</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>03:05:47</td>
<td>03:29:24</td>
<td>DEEP2_32_a_07_TM1</td>
<td>Resolved Molecular Gas in z-1 Star Forming Clumps</td>
<td>Cosens</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>04:29:28</td>
<td>05:16:58</td>
<td>J012507-_.a_07_TM1</td>
<td>Molecular outflows in luminous gravitationally lensed galaxies at z=2-5</td>
<td>Butler</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>05:17:11</td>
<td>06:38:24</td>
<td>UDS_1869_c_07_TM1</td>
<td>[OIII] 88 Line Observations of Four Remarkably Luminous Galaxies at z ~ 9 - 10.</td>
<td>Hashimoto</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>06:07:59</td>
<td>07:35:36</td>
<td>Horsehead_a_07_TP</td>
<td>Photo-erosion of molecular clouds: The Horsehead</td>
<td>Guzman</td>
<td>CL</td>
<td>Total Power</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>06:08:56</td>
<td>07:53:03</td>
<td>04191+15_a_07_7M</td>
<td>A Complete Survey of Protostellar Disk Gas and Dust Structure in Taurus</td>
<td>Sheehan</td>
<td>NA</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>07:33:57</td>
<td>08:05:20</td>
<td>SPT0509-_.a_07_TM1</td>
<td>A Complete Continuum Imaging Survey of Strongly-Lensed, High-Redshift Starbursts</td>
<td>Reuter</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>08:20:59</td>
<td>09:09:30</td>
<td>MMSSOMC-_b_07_TM2</td>
<td>Toward Understanding the Misalignment of Outflow and Jet from Protostars: Observation of the Warped Disk</td>
<td>Matsushita</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>09:09:38</td>
<td>10:08:54</td>
<td>FU_Ori_a_07_TM1</td>
<td>Water and Organic Molecules in Young Bursting Object</td>
<td>Nomura</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>10:09:02</td>
<td>11:15:30</td>
<td>G08-5_a_07_TM1</td>
<td>Mapping multi-phase outflows in three Herrera-Camus nearby z~2 galaxy analogs</td>
<td>CL</td>
<td>12-m</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:15:37</td>
<td>11:33:40</td>
<td>PJ105353_a_07_TM1</td>
<td>The Origin of [C II] and [N II] Emission Yun in High-z Dusty Starbursts</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:09:51</td>
<td>13:32:10</td>
<td>NGC_4189_a_06_TP</td>
<td>VERTICO: The Virgo Environment Traced in CO</td>
<td>Brown</td>
<td>EA EU NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>12:54:20</td>
<td>14:09:37</td>
<td>ngc3627_a_07_7M</td>
<td>Resolved CO Excitation across Nearby Galaxy Disks</td>
<td>Puschnig</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>13:32:17</td>
<td>14:14:19</td>
<td>NGC_4189_a_06_TP</td>
<td>VERTICO: The Virgo Environment Traced in CO</td>
<td>Brown</td>
<td>EA EU NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>14:40:36</td>
<td>14:58:02</td>
<td>18137_20_a_07_TM1</td>
<td>A search for icy collisional fragments among the Jupiter Trojan asteroids</td>
<td>Brown</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>14:58:10</td>
<td>15:25:05</td>
<td>R_crt_a_07_TM2</td>
<td>HCN formation in the innermost region of O-rich AGB stars</td>
<td>Champion</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>15:10:43</td>
<td>15:46:44</td>
<td>687568_a_06_7M</td>
<td>ALMAGAL: ALMA Evolutionary study of High Mass Protocluster Formation in the Galaxy</td>
<td>Molinari</td>
<td>EA EU NA</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>15:25:12</td>
<td>16:00:07</td>
<td>11488_19_a_07_TM1</td>
<td>A search for icy collisional fragments among the Jupiter Trojan asteroids</td>
<td>Brown</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
2019-10-10

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:26:01</td>
<td>01:04:32</td>
<td>NGC7172_a_06_7M</td>
<td></td>
<td>WISDOM: Constraining the scatter in the M-sigma relation at fixed velocity dispersion</td>
<td>Davis</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>00:48:52</td>
<td>01:47:39</td>
<td>J2140+02_a_07_TM1</td>
<td></td>
<td>[OII] 88 Line Observations of Four Remarkably Luminous Galaxies at z ~ 9 - 10.</td>
<td>Hashimoto</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>01:47:45</td>
<td>03:18:55</td>
<td>LACES-Ly_b_08_TM1</td>
<td></td>
<td>Understanding the Physical Origin of [CII] Deficit in Early Star-Forming Galaxies</td>
<td>Nakajima</td>
<td>EU</td>
<td>12-m</td>
<td>8</td>
</tr>
<tr>
<td>02:30:39</td>
<td>04:03:25</td>
<td>NGC1300_a_07_7M</td>
<td></td>
<td>PHANGS-CMZs: Uncovering the Lifecycle of Galactic Nuclei by Mapping Extragalactic 'Central Molecular Zones'</td>
<td>Chevance</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>03:19:00</td>
<td>04:37:07</td>
<td>target_g_a_08_TM1</td>
<td></td>
<td>Opening a new path in the uncharted territory of high-redshift clumpy galaxies</td>
<td>Iani</td>
<td>EU</td>
<td>12-m</td>
<td>8</td>
</tr>
<tr>
<td>04:04:46</td>
<td>05:39:29</td>
<td>M33_e_06_7M</td>
<td></td>
<td>Surveying Triangulum with the ACA: A Key Perspective on Molecular Clouds at High Resolution</td>
<td>Rosolowsky</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>04:24:30</td>
<td>05:56:50</td>
<td>NGC1300_a_07_TP</td>
<td></td>
<td>PHANGS-CMZs: Uncovering the Lifecycle of Galactic Nuclei by Mapping Extragalactic 'Central Molecular Zones'</td>
<td>Chevance</td>
<td>EU</td>
<td>Total Power</td>
<td>7</td>
</tr>
<tr>
<td>04:46:56</td>
<td>05:59:15</td>
<td>target_g_a_08_TM1</td>
<td></td>
<td>Opening a new path in the uncharted territory of high-redshift clumpy galaxies</td>
<td>Iani</td>
<td>EU</td>
<td>12-m</td>
<td>8</td>
</tr>
<tr>
<td>05:39:36</td>
<td>07:21:42</td>
<td>NGC1300_a_07_7M</td>
<td></td>
<td>PHANGS-CMZs: Uncovering the Lifecycle of Galactic Nuclei by Mapping Extragalactic 'Central Molecular Zones'</td>
<td>Chevance</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>06:11:38</td>
<td>07:39:02</td>
<td>Horsehea_a_07_TP</td>
<td></td>
<td>Photo-erosion of molecular clouds: The Horsehead</td>
<td>Guzman</td>
<td>CL</td>
<td>Total Power</td>
<td>7</td>
</tr>
<tr>
<td>06:22:50</td>
<td>07:29:05</td>
<td>G04-1_a_07_TM1</td>
<td></td>
<td>Mapping multi-phase outflows in three Herrera-Camus nearby z~2 galaxy analogs</td>
<td>Herrera-Camus</td>
<td>CL</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>07:29:11</td>
<td>08:35:02</td>
<td>G04-1_a_07_TM1</td>
<td></td>
<td>Mapping multi-phase outflows in three Herrera-Camus nearby z~2 galaxy analogs</td>
<td>Herrera-Camus</td>
<td>CL</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>08:35:12</td>
<td>09:54:46</td>
<td>Lh01_a_07_TM1</td>
<td></td>
<td>The Power of Outflows in Low-Metallicity Star Formation</td>
<td>Tanaka</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>10:03:27</td>
<td>11:10:12</td>
<td>G08-5_a_07_TM1</td>
<td></td>
<td>Mapping multi-phase outflows in three Herrera-Camus nearby z~2 galaxy analogs</td>
<td>CL</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>10:55:46</td>
<td>12:43:52</td>
<td>Horsehea_a_07_7M</td>
<td></td>
<td>Photo-erosion of molecular clouds: The Horsehead</td>
<td>Guzman</td>
<td>CL</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>11:10:19</td>
<td>12:30:03</td>
<td>Lh01_a_07_TM1</td>
<td></td>
<td>The Power of Outflows in Low-Metallicity Star Formation</td>
<td>Tanaka</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>14:20:31</td>
<td>15:56:29</td>
<td>NGC4321_a_08_7M</td>
<td></td>
<td>Comprehensive study of the physical conditions of the molecular gas in the inner 5-7 kpc of two star-forming galaxies</td>
<td>Liu</td>
<td>EU</td>
<td>7-m</td>
<td>8</td>
</tr>
<tr>
<td>15:21:31</td>
<td>15:39:37</td>
<td>32501_20_a_07_TM1</td>
<td></td>
<td>A search for icy collisional fragments among the Jupiter Trojan asteroids</td>
<td>Brown</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>15:39:43</td>
<td>16:12:58</td>
<td>24452_20_a_07_TM1</td>
<td></td>
<td>A search for icy collisional fragments among the Jupiter Trojan asteroids</td>
<td>Brown</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>16:03:50</td>
<td>17:44:57</td>
<td>NGC4321_a_08_7M</td>
<td></td>
<td>Comprehensive study of the physical conditions of the molecular gas in the inner 5-7 kpc of two star-forming galaxies</td>
<td>Liu</td>
<td>EU</td>
<td>7-m</td>
<td>8</td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>----</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>00:33:12</td>
<td>01:27:45</td>
<td>2019.1.00263.S</td>
<td>DR21_DF1_a_06_7M</td>
<td>Explosive Outflows from Compact Groups of Forming Massive Protostars</td>
<td>Bally</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>00:45:15</td>
<td>01:13:55</td>
<td>2019.1.01025.S</td>
<td>J2211m63_a_06_TM1</td>
<td>A Comprehensive Study of Quasar Host Galaxy and Cosmic Reionization with a Large Statistical Quasar Sample at z>6.5</td>
<td>Wang</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:33:32</td>
<td>02:53:07</td>
<td>2018.1.00333.S</td>
<td>W2246-05_a_07_TM1</td>
<td>Mapping the Dynamics of a Multiple-merger System at z = 4.6</td>
<td>Diaz-Santos</td>
<td>CL</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>01:40:26</td>
<td>03:09:24</td>
<td>2019.1.00297.S</td>
<td>SPT2354-_a_07_7M</td>
<td>A comprehensive sample of the two [CI] lines in lensed high-redshift galaxies</td>
<td>Bethermin</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>03:07:24</td>
<td>04:27:56</td>
<td>2018.1.00333.S</td>
<td>W2246-05_a_07_TM1</td>
<td>Mapping the Dynamics of a Multiple-merger System at z = 4.6</td>
<td>Diaz-Santos</td>
<td>CL</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>03:09:33</td>
<td>04:06:08</td>
<td>2019.1.01779.T</td>
<td>Transien_a_06_7M</td>
<td>The Death Throes of Massive Stars: Early Millimeter Observations of Energetic Explosions in a Dense Medium</td>
<td>Ho</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>04:06:16</td>
<td>05:40:56</td>
<td>2019.1.01182.S</td>
<td>M33_f_06_7M</td>
<td>Surveying Triangulum with the ACA: A Key Perspective on Molecular Clouds at High Resolution</td>
<td>Rosolowsky</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>05:41:03</td>
<td>07:16:15</td>
<td>2019.1.01718.S</td>
<td>NGC1433_a_07_7M</td>
<td>PHANGS-CMZs: Uncovering the Lifecycle of Galactic Nuclei by Mapping Extragalactic 'Central Molecular Zones'</td>
<td>Chevance</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>05:43:57</td>
<td>06:00:32</td>
<td>2019.1.00964.S</td>
<td>DESJ0408_a_06_TM1</td>
<td>Towards improved constraints on dark matter with strongly lensed quasars</td>
<td>Fan</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>06:00:38</td>
<td>07:12:12</td>
<td>2019.1.00779.S</td>
<td>SPT0348-b_07_TM1</td>
<td>SPT z~4-7 protoclusters: cluster membership and dynamics from line observations</td>
<td>Chapman</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>07:12:18</td>
<td>07:47:11</td>
<td>2019.1.00946.S</td>
<td>BRJ0355-a_07_TM1</td>
<td>A Pilot Survey Towards the First</td>
<td>Fan</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
</tbody>
</table>
00:23:30 01:07:14 2019.1.00363.S NGC7049_a_06_7M WISDOM: Constraining the scatter in the M-sigma relation at fixed velocity dispersion Davis EU 7-m 6
00:28:41 01:00:47 2019.1.00840.S SDSSJ222_a_03_TM1 The Host Galaxies of the Radio-Loud Quasars at z<5 Mazzucchelli EU 12-m 3
01:20:17 02:09:59 2017.1.01003.S NGC_7135_a_03_7M Recovering Extended Structures in Merger Remnants Ueda NA 7-m 3
01:27:04 02:20:30 2019.1.01027.S ELAIS-S1_a_06_TM1 Feeding the Beasts: Investigating the Merger-Induced Growth of Star-forming BCGs from 0.7 < z < 1.7 Noble NA 12-m 6
02:10:06 03:00:57 2019.1.01229.S PG_0003+_a_03_7M First Systematic Study of Dense Molecular Gas in Quasars Bauer CL 7-m 3
02:20:36 03:14:16 2019.1.01027.S ELAIS-S1_a_06_TM1 Feeding the Beasts: Investigating the Merger-Induced Growth of Star-forming BCGs from 0.7 < z < 1.7 Noble NA 12-m 6
03:01:06 03:52:56 2019.1.00297.S SPT0150-_a_06_7M A comprehensive sample of the two [CI] lines in lensed high-redshift galaxies Bethermin EU 7-m 6
03:29:51 04:24:24 2019.1.01027.S ELAIS-S1_a_06_TM1 Feeding the Beasts: Investigating the Merger-Induced Growth of Star-forming BCGs from 0.7 < z < 1.7 Noble NA 12-m 6
03:53:03 04:41:29 2019.1.00363.S PGC00624_a_06_7M WISDOM: Constraining the scatter in the M-sigma relation at fixed velocity dispersion Davis EU 7-m 6
04:24:30 04:47:51 2018.1.01344.S ngc660_a_06_TM1 CON-quest: Finding the most obscured galaxy nuclei Aalto EU 12-m 6
04:28:20 05:34:43 2019.1.00722.S NGC1232_a_03_TP Deep CO(J=1-0) mapping survey of 103 Eridanus supergroup galaxies with Morita array Morokuma EA Total Power 3
04:42:03 05:27:14 2019.1.00363.S NGC1052_a_06_7M WISDOM: Constraining the scatter in the M-sigma relation at fixed velocity dispersion Davis EU 7-m 6
04:47:57 05:36:21 2019.1.00663.S J010312-_a_06_TM1 Molecular outflows in luminous gravitationally lensed galaxies at z=2-5 Butler EU 12-m 6
05:27:21 06:45:49 2019.1.01132.S NGC1482_a_06_7M Molecular gas in the starburst-driven superwind of NGC 1482 Salak EA 7-m 6
05:34:50 06:43:30 2019.1.00722.S NGC1232_a_03_TP Deep CO(J=1-0) mapping survey of 103 Eridanus supergroup galaxies with Morita array Morokuma EA Total Power 3
05:36:27 06:26:16 2018.1.01205.L NGC1333_a_06_TM2 Fifty AU STudy of the chemistry in the Yamamoto disk/envelope system of Solar-like protostars (FAUST) EA EU NA 12-m 6
06:26:23 07:15:56 2018.1.01205.L NGC1333_a_06_TM2 Fifty AU STudy of the chemistry in the Yamamoto disk/envelope system of Solar-like protostars (FAUST) EA EU NA 12-m 6
06:44:00 07:51:04 2019.1.00722.S NGC1232_a_03_TP Deep CO(J=1-0) mapping survey of 103 Eridanus supergroup galaxies with Morita array Morokuma EA Total Power 3
06:45:56 07:28:04 2019.1.00363.S NGC1497_a_06_7M WISDOM: Constraining the scatter in the M-sigma relation at fixed velocity dispersion Davis EU 7-m 6
07:16:02 08:06:05 2019.1.01027.S CDFS-18_a_06_TM1 Feeding the Beasts: Investigating the Merger-Induced Growth of Star-forming BCGs from 0.7 < z < 1.7 Noble NA 12-m 6
07:28:11 08:45:02 2019.1.00843.S 30_Dorad_a_06_7M The effects of feedback on molecular gas: Survey of CO in 30 Doradus Wong NA 7-m 6
07:51:11 08:57:04 2019.1.00722.S NGC1232_a_03_TP Deep CO(J=1-0) mapping survey of 103 Eridanus supergroup galaxies with Morita array Morokuma EA Total Power 3
08:06:11 08:47:40 2019.1.00663.S J053250-_a_06_TM1 Molecular outflows in luminous gravitationally lensed galaxies at z=2-5 Butler EU 12-m 6
08:45:09 10:02:23 2019.1.00843.S 30_Dorad_a_06_7M The effects of feedback on molecular gas: Survey of CO in 30 Doradus Wong NA 7-m 6
08:47:46 09:02:10 2019.1.00195.L 519029_a_06_TM2 ALMAGAL: ALMA Evolutionary study of High Mass Protocluster Formation in the Galaxy Molinari EA EU NA 12-m 6
08:57:11 10:02:56 2019.1.00722.S NGC1232_a_03_TP Deep CO(J=1-0) mapping survey of 103 Eridanus supergroup galaxies with Morita array Morokuma EA Total Power 3
09:02:16 09:28:38 2019.1.00263.S IRAS0550_a_06_TM2 Explosive Outflows from Compact Groups of Forming Massive Bally NA 12-m 6
Protostars
Molecular outflows in luminous gravitationally lensed galaxies at z=2-5 Butler EU 12-m 6

Effects of feedback on molecular gas: Survey of CO in 30 Doradus Wong NA 7-m 6

ALMA Mapping of the Most Distant Galaxy Proto-Cluster Anchored by A Luminous Quasar at z=6.63 Yang NA 12-m 6

Effects of feedback on molecular gas: Survey of CO in 30 Doradus Wong NA 7-m 6

ALMA Mapping of the Most Distant Galaxy Proto-Cluster Anchored by A Luminous Quasar at z=6.63 Yang NA 12-m 6

ALMAGAL: ALMA Evolutionary study of High Mass Protocluster Formation in the Galaxy Molinari EA EU NA 7-m 6

ALMA Mapping of the Most Distant Galaxy Proto-Cluster Anchored by A Luminous Quasar at z=6.63 Yang NA 12-m 6

First Systematic Study of Dense Molecular Gas in Quasars Bauer CL 7-m 3

Probing the spectral evolution of jets with ALMA Meyer NA 12-m 6

ALMAGAL: ALMA Evolutionary study of High Mass Protocluster Formation in the Galaxy Molinari EA EU NA 12-m 6

ALMAGAL: ALMA Evolutionary study of High Mass Protocluster Formation in the Galaxy Molinari EA EU NA 12-m 6

A comprehensive sample of the two [CI] lines in lensed high-redshift galaxies Bethermin EU 7-m 4

The initial gas flow towards extremely young high-mass clumps Feng Total Power 3

2019-10-13

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:42:12</td>
<td>01:41:34</td>
<td>SDSSJ2221_a_03_TM1</td>
<td></td>
<td>The Host Galaxies of the Radio-Loud Quasars at z=5</td>
<td>Mazzucchelli</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>00:58:21</td>
<td>01:50:34</td>
<td>SPT2146_a_04_7M</td>
<td></td>
<td>A comprehensive sample of the two</td>
<td>Bethermin</td>
<td>EU</td>
<td>7-m</td>
<td>4</td>
</tr>
<tr>
<td>01:41:39</td>
<td>01:58:07</td>
<td>WGD0383_a_06_TM1</td>
<td></td>
<td>Towards improved constraints on darkStacey matter with strongly lensed quasars</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>01:50:41</td>
<td>02:49:22</td>
<td>SPT2335_a_04_7M</td>
<td></td>
<td>A comprehensive sample of the two [CI] lines in lensed high-redshift galaxies</td>
<td>Bethermin</td>
<td>EU</td>
<td>7-m</td>
<td>4</td>
</tr>
<tr>
<td>01:58:12</td>
<td>02:13:41</td>
<td>PJO11646_a_06_TM2</td>
<td></td>
<td>Probing Gas, Dust, Stars, and Star Formation Activity down to 100-pc Scales using Strong Gravitational Lensing</td>
<td>Kamieneski</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:13:48</td>
<td>03:16:18</td>
<td>J0136+02_a_06_TM1</td>
<td></td>
<td>On the star-forming and co-evolution nature of less-biased low-luminosity quasars at z > 6</td>
<td>Izumi</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:49:29</td>
<td>03:37:20</td>
<td>SPT0020_a_04_7M</td>
<td></td>
<td>A comprehensive sample of the two</td>
<td>Bethermin</td>
<td>EU</td>
<td>7-m</td>
<td>4</td>
</tr>
<tr>
<td>03:16:24</td>
<td>04:18:53</td>
<td>J0136+02_a_06_TM1</td>
<td></td>
<td>On the star-forming and co-evolution nature of less-biased low-luminosity quasars at z > 6</td>
<td>Izumi</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>03:37:27</td>
<td>05:07:31</td>
<td>SPT0113_a_04_7M</td>
<td></td>
<td>A comprehensive sample of the two</td>
<td>Bethermin</td>
<td>EU</td>
<td>7-m</td>
<td>4</td>
</tr>
<tr>
<td>04:08:01</td>
<td>05:14:13</td>
<td>NGC1232_a_03_TP</td>
<td></td>
<td>Deep CO(J=1-0) mapping survey of 103 Eridanus supergroup galaxies with Morita array</td>
<td>Morokuma</td>
<td>Total Power</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>04:19:00</td>
<td>04:34:18</td>
<td>PJO20941_a_06_TM2</td>
<td></td>
<td>Probing Gas, Dust, Stars, and Star Formation Activity down to 100-pc Scales using Strong Gravitational Lensing</td>
<td>Kamieneski</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>04:34:24</td>
<td>05:06:48</td>
<td>J0131-03_a_07_TM1</td>
<td></td>
<td>A Pilot Survey Towards the First</td>
<td>Fan</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
</tbody>
</table>
Direct Black Hole Mass Measurements at z~5

Black hole mass measurements in the Davis most MASSIVE Galaxies 2019.1.00657.S

WISDOM: Constraining the scatter in the M-sigma relation at fixed velocity dispersion 2019.1.00363.S

Deep CO(J=1-0) mapping survey of 103 Eridanus supergroup galaxies with Morita array 2019.1.00722.S

SPT z=4-7 protoclusters: cluster membership and dynamics from line observations 2019.1.00779.S

WISDOM: Constraining the scatter in the M-sigma relation at fixed velocity dispersion 2019.1.00363.S

Deep CO(J=1-0) mapping survey of 103 Eridanus supergroup galaxies with Morita array 2019.1.00722.S

A comprehensive sample of the two [CI] lines in lensed high-redshift galaxies 2019.1.00297.S

Is the IMF top-heavy in an intensely star-forming disk at z=2.6? 2019.1.01365.S

Deep CO(J=1-0) mapping survey of 103 Eridanus supergroup galaxies with Morita array 2019.1.00722.S

Towards improved constraints on darkStacey matter with strongly lensed quasars 2019.1.00964.S

Molecular outflows in luminous gravitationally lensed galaxies at z=2-5 2019.1.00663.S

ALMAGAL: ALMA Evolutionary study of High Mass Protocluster Formation in the Galaxy 2019.1.00195.L

ALMAGAL: ALMA Evolutionary study of High Mass Protocluster Formation in the Galaxy 2019.1.00195.L

ALMAGAL: ALMA Evolutionary study of High Mass Protocluster Formation in the Galaxy 2019.1.00195.L

Molecular outflows in luminous gravitationally lensed galaxies at z=2-5 2019.1.00663.S

A comprehensive sample of the two [CI] lines in lensed high-redshift galaxies 2019.1.00297.S

Spectroscopic identification of a pilot sample of two hot dusty starbursts at z~4 hidden at 850um 2019.1.01722.S

ALMAGAL: ALMA Evolutionary study of High Mass Protocluster Formation in the Galaxy 2019.1.00195.L

AGN Before and After: Towards a balanced view of the link between circumnuclear gas and nuclear black hole activity 2019.1.01742.S

AGN Before and After: Towards a balanced view of the link between circumnuclear gas and nuclear black hole activity 2019.1.01742.S

ALMAGAL: ALMA Evolutionary study of High Mass Protocluster Formation in the Galaxy 2019.1.00195.L

Wang

Butler

Morokuma

Butler

Morokuma

Morokuma

Wong

Bethermin

Stacey

Chapman

Wong

Doherty

Morokuma

Morokuma

Morokuma

Morokuma

Bethermin

Butler

Butler

Morokuma

Wong

Wang

Wong

Wang

Wong

Morokuma

Morokuma

Morokuma

Morokuma

Bethermin

Butler

Butler

Morokuma

Wong

Doherty

Morokuma

Morokumactually, it seems like there might be a misunderstanding. The text provided is not a properly formatted table. It appears to be a collection of research papers or articles, each starting with a title and a brief description of the content. Each entry includes authors' names, possibly indicating the lead researchers or contributors. The dates and codes might be related to specific projects or studies. Given the format, it seems like these are abstracts or summaries of research publications. The nature of the content suggests topics related to astrophysics or galactic studies, possibly involving black hole mass measurements, protocluster formation, and cosmic gas dynamics. However, without further context or a more structured format, it's hard to provide a more detailed analysis or answer specific questions about the document content.
<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:20:55</td>
<td>14:45:41</td>
<td>2019.1.01742.S</td>
<td>NGC_4224_a_06_TM1</td>
<td>AGN Before and After: Towards a balanced view of the link between circumnuclear gas and nuclear black hole activity</td>
<td>Rosario EU</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>15:21:46</td>
<td>15:48:32</td>
<td>2019.1.01742.S</td>
<td>NGC_4260_a_06_TM1</td>
<td>AGN Before and After: Towards a balanced view of the link between circumnuclear gas and nuclear black hole activity</td>
<td>Rosario EU</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>15:40:16</td>
<td>17:12:54</td>
<td>2019.1.01251.S</td>
<td>Q1228+31_a_04_7M</td>
<td>SUPERCOLD-CGM: a high-z survey of molecular gas across the circum-galactic medium of Enormous Lya Nebulae</td>
<td>Emonts NA</td>
<td>7-m</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>16:16:47</td>
<td>16:43:28</td>
<td>2019.1.01742.S</td>
<td>NGC_4260_a_06_TM1</td>
<td>AGN Before and After: Towards a balanced view of the link between circumnuclear gas and nuclear black hole activity</td>
<td>Rosario EU</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>17:03:41</td>
<td>18:05:08</td>
<td>2019.1.01070.S</td>
<td>2MASS_J1_a_04_TM1</td>
<td>Tracing molecular outflows with [CI] at Venturi high redshift</td>
<td>CL CL</td>
<td>12-m</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>18:05:15</td>
<td>19:06:32</td>
<td>2019.1.01070.S</td>
<td>2MASS_J1_a_04_TM1</td>
<td>Tracing molecular outflows with [CI] at Venturi high redshift</td>
<td>CL CL</td>
<td>12-m</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>19:04:42</td>
<td>20:24:01</td>
<td>2019.1.00685.S</td>
<td>I17545-2-a_03_7M</td>
<td>On the origin of the dense gas star formation law in Galactic high-mass star forming clumps</td>
<td>Liu NA</td>
<td>7-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>19:24:33</td>
<td>20:26:09</td>
<td>2019.1.01070.S</td>
<td>2MASS_J1_a_04_TM1</td>
<td>Tracing molecular outflows with [CI] at Venturi high redshift</td>
<td>CL CL</td>
<td>12-m</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>20:40:00</td>
<td>21:05:12</td>
<td>2018.1.01070.S</td>
<td>G12.91_a_03_TM2</td>
<td>Measuring the Demographics of Typical Nascent Massive Protoclusters</td>
<td>Towner NA</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>21:06:37</td>
<td>22:08:19</td>
<td>2019.1.00840.S</td>
<td>SDSSJ205_a_06_TM1</td>
<td>The Host Galaxies of the Radio-Loud Quasars at z~5</td>
<td>Mazzucchelli EU</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>22:08:26</td>
<td>23:02:56</td>
<td>2019.1.00779.S</td>
<td>SPT2052_a_03_TM1</td>
<td>SPT z~4-7 protoclusters: cluster membership and dynamics from line observations</td>
<td>Chapman NA</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>22:14:00</td>
<td>23:18:16</td>
<td>2019.1.00297.S</td>
<td>SPT2048-a_04_TM3</td>
<td>A comprehensive sample of the two [CI] lines in lensed high-redshift galaxies</td>
<td>Bethermin EU</td>
<td>7-m</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>23:03:04</td>
<td>23:56:11</td>
<td>2019.1.00147.S</td>
<td>J2211-32-a_03_TM1</td>
<td>CO(7-6) and [CI] survey in z~6 quasars</td>
<td>Decarli EU</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>23:18:23</td>
<td>00:22:43</td>
<td>2019.1.00297.S</td>
<td>SPT2048-a_04_TM3</td>
<td>A comprehensive sample of the two [CI] lines in lensed high-redshift galaxies</td>
<td>Bethermin EU</td>
<td>7-m</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

2019-10-14

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:16:42</td>
<td>01:17:21</td>
<td>2019.1.00147.S</td>
<td>PJ308-21-a_03_TM1</td>
<td>CO(7-6) and [CI] survey in z~6 quasars</td>
<td>Decarli EU</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>01:17:28</td>
<td>02:22:16</td>
<td>2019.1.00147.S</td>
<td>PJ359-06-a_03_TM1</td>
<td>CO(7-6) and [CI] survey in z~6 quasars</td>
<td>Decarli EU</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>01:33:05</td>
<td>02:23:07</td>
<td>2017.1.01003.S</td>
<td>AM_2246--a_03_7M</td>
<td>Recovering Extended Surveys in Merger Remnants</td>
<td>Ueda NA</td>
<td>7-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>02:22:32</td>
<td>03:26:26</td>
<td>2019.1.00411.S</td>
<td>SDSSJ235-a_03_TM1</td>
<td>Small-Scale Clustering of CO emitters in Quasars</td>
<td>Rosario EU</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>02:23:16</td>
<td>03:08:18</td>
<td>2017.1.01003.S</td>
<td>NGC_7252-a_03_7M</td>
<td>Recovering Extended Surveys in Merger Remnants</td>
<td>Ueda NA</td>
<td>7-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>03:08:25</td>
<td>04:25:24</td>
<td>2017.1.01003.S</td>
<td>NGC_7727-a_03_7M</td>
<td>Recovering Extended Surveys in Merger Remnants</td>
<td>Ueda NA</td>
<td>7-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>03:26:32</td>
<td>04:30:52</td>
<td>2019.1.00411.S</td>
<td>SDSSJ004-c_03_TM1</td>
<td>Small-Scale Clustering of CO emitters in Quasars</td>
<td>Rosario EU</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Duration</td>
<td>Date</td>
<td>ID</td>
<td>Title</td>
<td>Author</td>
<td>Array</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>04:25:34</td>
<td>05:59:57</td>
<td>2019.1.00722.S</td>
<td>2MASX_J0_a_03_7M</td>
<td>Deep CO(J=1-0) mapping survey of 103 Eridanus supergroup galaxies with Morita array</td>
<td>Morokuma</td>
<td>EA</td>
<td>7-m</td>
<td></td>
</tr>
<tr>
<td>04:53:24</td>
<td>05:31:37</td>
<td>2019.1.00722.S</td>
<td>NGC1232_a_03_TP</td>
<td>Deep CO(J=1-0) mapping survey of 103 Eridanus supergroup galaxies with Morita array</td>
<td>Morokuma</td>
<td>EA</td>
<td>Total Power</td>
<td></td>
</tr>
<tr>
<td>06:00:04</td>
<td>06:52:48</td>
<td>2017.1.01003.S</td>
<td>Arp_187_a_03_7M</td>
<td>Recovering Extended Structures in Merger Remnants</td>
<td>Ueda</td>
<td>NA</td>
<td>7-m</td>
<td></td>
</tr>
<tr>
<td>06:17:16</td>
<td>07:04:33</td>
<td>2019.1.00722.S</td>
<td>NGC1232_a_03_TP</td>
<td>Deep CO(J=1-0) mapping survey of 103 Eridanus supergroup galaxies with Morita array</td>
<td>Morokuma</td>
<td>EA</td>
<td>Total Power</td>
<td></td>
</tr>
<tr>
<td>08:35:17</td>
<td>09:27:24</td>
<td>2017.1.01003.S</td>
<td>AM_0612_-a_03_7M</td>
<td>Recovering Extended Structures in Merger Remnants</td>
<td>Ueda</td>
<td>NA</td>
<td>7-m</td>
<td></td>
</tr>
<tr>
<td>09:27:31</td>
<td>10:09:02</td>
<td>2019.1.00685.S</td>
<td>I08076-3_a_03_7M</td>
<td>On the origin of the dense gas star formation law in Galactic high-mass star forming clumps</td>
<td>Liu</td>
<td>EA</td>
<td>7-m</td>
<td></td>
</tr>
<tr>
<td>10:09:09</td>
<td>11:37:45</td>
<td>2019.1.00685.S</td>
<td>I08303-4_a_03_7M</td>
<td>On the origin of the dense gas star formation law in Galactic high-mass star forming clumps</td>
<td>Liu</td>
<td>EA</td>
<td>7-m</td>
<td></td>
</tr>
<tr>
<td>11:26:30</td>
<td>11:43:19</td>
<td>2019.1.01709.S</td>
<td>3c212_a_03_TM1</td>
<td>Probing the spectral evolution of jets with ALMA</td>
<td>Meyer</td>
<td>NA</td>
<td>12-m</td>
<td></td>
</tr>
</tbody>
</table>