ALMA Observing Activity from 2019-11-25T17:59:00 to 2019-12-02T18:00:00

QA0 pass executions

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>20:09:58</td>
<td>21:30:08</td>
<td>M17SW_a_06_7M</td>
<td>SchedBlock</td>
<td>Why is there a 400 K cloud of C3H+ in L17SW?</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>20:47:55</td>
<td>22:29:50</td>
<td>Titan_c_06_TM1</td>
<td>SchedBlock</td>
<td>Elucidating Titan's High Altitude Nitrogen Chemistry</td>
<td>Cordiner</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>21:30:08</td>
<td>00:25:18</td>
<td>cQSO_J21_a_06_TM1</td>
<td>SchedBlock</td>
<td>A comprehensive ALMA Redshift Survey of the Brightest Herschel Galaxies</td>
<td>Alexander</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>22:15:11</td>
<td>23:35:09</td>
<td>RCS_J231_a_03_7M</td>
<td>SchedBlock</td>
<td>The highest resolution imaging of the Sunyaev-Zeldovich effect at z~1</td>
<td>Kitayama</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>22:29:56</td>
<td>23:53:18</td>
<td>HerBS-10_a_04_TM1</td>
<td>SchedBlock</td>
<td>A comprehensive ALMA Redshift Survey of the Brightest Herschel Galaxies</td>
<td>Urquhart</td>
<td>EU</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>23:01:35</td>
<td>23:55:47</td>
<td>ngc7743_a_06_TM1</td>
<td>SchedBlock</td>
<td>The direct measurement of the bar pattern speed of galaxies</td>
<td>Tanaka</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
</tbody>
</table>

2019-11-26

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:21:42</td>
<td>01:24:50</td>
<td>RXCJ0032_b_06_TM1</td>
<td>SchedBlock</td>
<td>ALMA Lensing Cluster Survey</td>
<td>Kohno</td>
<td>CL EA EU NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>00:54:12</td>
<td>02:18:19</td>
<td>Filament_a_06_7M</td>
<td>SchedBlock</td>
<td>The molecular gas of a multi-phase filament in the lobes of Fornax A</td>
<td>Kleiner</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>01:43:27</td>
<td>02:51:41</td>
<td>NGC_1313_c_06_TP</td>
<td>SchedBlock</td>
<td>Physics at High Angular Resolution in Faesi Nearby Galaxies: The Local Galaxy Inventory Continued</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>01:55:06</td>
<td>02:25:28</td>
<td>XMM-J-67_a_07_TM1</td>
<td>SchedBlock</td>
<td>REBELS: An ALMA Large Program to Bouwens Discover the Most Luminous [CII]+[OIII] Galaxies in the Reionization Epoch</td>
<td>CL EA EU NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>02:25:35</td>
<td>02:58:11</td>
<td>XMM-J-67_b_07_TM1</td>
<td>SchedBlock</td>
<td>REBELS: An ALMA Large Program to Bouwens Discover the Most Luminous [CII]+[OIII] Galaxies in the Reionization Epoch</td>
<td>CL EA EU NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>02:51:48</td>
<td>03:47:40</td>
<td>NGC_1313_a_06_TP</td>
<td>SchedBlock</td>
<td>Physics at High Angular Resolution in Faesi Nearby Galaxies: The Local Galaxy Inventory Continued</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>02:58:14</td>
<td>04:20:03</td>
<td>30_Dorad_c_06_7M</td>
<td>SchedBlock</td>
<td>The effects of feedback on molecular gas: Survey of CO in 30 Doradus</td>
<td>Wong</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>02:59:46</td>
<td>04:10:01</td>
<td>SPT0311-_a_07_TM1</td>
<td>SchedBlock</td>
<td>The Formation of Massive Galaxies in Marrone the Reionization Era</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>04:10:36</td>
<td>04:50:51</td>
<td>T_Tau_a_07_TM2</td>
<td>SchedBlock</td>
<td>Investigating Disk Disruption and Mass Outflow Triggered by Binary Orbital Motion: The Important Case of T Tauri South</td>
<td>Beck</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>04:20:46</td>
<td>06:13:24</td>
<td>Horsehea_a_07_7M</td>
<td>SchedBlock</td>
<td>Photo-erosion of molecular clouds: The Horsehead</td>
<td>Guzman</td>
<td>CL</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>04:51:40</td>
<td>06:03:32</td>
<td>SPT0615-_a_07_TM1</td>
<td>SchedBlock</td>
<td>Confirming FIR [O II] emission from a Tamura candidate z ~ 10 galaxy</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>05:22:15</td>
<td>06:51:36</td>
<td>Horsehea_a_07_TP</td>
<td>SchedBlock</td>
<td>Photo-erosion of molecular clouds: The Horsehead</td>
<td>Guzman</td>
<td>CL</td>
<td>Total Power</td>
<td>7</td>
</tr>
<tr>
<td>06:05:12</td>
<td>06:41:31</td>
<td>MACS0429_a_06_TM1</td>
<td>SchedBlock</td>
<td>REBELS: An ALMA Large Program to Bouwens Discover the Most Luminous [CII]+[OIII] Galaxies in the Reionization Epoch</td>
<td>CL EA EU NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>06:13:32</td>
<td>08:06:16</td>
<td>Horsehea_a_07_7M</td>
<td>SchedBlock</td>
<td>Photo-erosion of molecular clouds: The Horsehead</td>
<td>Guzman</td>
<td>CL</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>06:41:38</td>
<td>07:28:13</td>
<td>HD_36546_a_06_TM1</td>
<td>SchedBlock</td>
<td>Gas around MS stars: A common exocometary origin for hot and cold gas</td>
<td>Rebulillo</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>06:51:44</td>
<td>08:19:44</td>
<td>Horsehea_a_07_TP</td>
<td>SchedBlock</td>
<td>Photo-erosion of molecular clouds: The Horsehead</td>
<td>Guzman</td>
<td>CL</td>
<td>Total Power</td>
<td>7</td>
</tr>
<tr>
<td>07:29:33</td>
<td>08:47:43</td>
<td>SDSS_J08_b_07_TM1</td>
<td>SchedBlock</td>
<td>Detecting the Full Range of z~4 Galaxies Associated with Damped Ly-alpha Systems</td>
<td>Prochaska</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>08:07:34</td>
<td>10:00:33</td>
<td>Horsehea_a_07_7M</td>
<td>SchedBlock</td>
<td>Photo-erosion of molecular clouds: The Horsehead</td>
<td>Guzman</td>
<td>CL</td>
<td>7-m</td>
<td>7</td>
</tr>
</tbody>
</table>
08:28:40 09:57:02 2019.1.00558.S Horsehea_a_07_TP Photo-erosion of molecular clouds: The Horsehead Guzman CL Total Power 7
09:30:13 10:09:01 2019.1.01634.L UVISTA-J_c_07_TM1 REBELS: An ALMA Large Program to Bouwens Discover the Most Luminous [CII]+[OIII] Galaxies in the Reionization Epoch CL EA EU NA 12-m 7
10:11:45 11:17:38 2019.1.00233.S PKS1138-_a_07_TM2 Pinpointing dust-enshrouded star-forming regions within young protocluster galaxies at z=2.16 Koyama EA 12-m 7
12:00:39 12:58:12 2019.A.00008.S Borisov_a_08_TM1 First D/H ratio for an interstellar comet: A window into the chemical complexity of protoplanetary system Jensen EU 12-m 8
12:02:15 13:38:02 2019.1.01635.S NGC4321_a_08_7M Comprehensive study of the physical conditions of the molecular gas in the inner 5-7 kpc of two star-forming galaxies Liu EU 7-m 8
13:07:51 14:05:11 2019.A.00008.S Borisov_a_08_TM1 First D/H ratio for an interstellar comet: A window into the chemical complexity of protoplanetary system Jensen EU 12-m 8
14:21:30 15:44:21 2019.1.01778.S A1689-zD_a_07_TM1 The first measurement of metallicity and ISM conditions of a normal galaxy at reionisation Watson EU 12-m 7
15:47:00 16:59:50 2019.1.01357.S IM_Lup_a_07_TM2 Constraining the H2 Surface Density Profile in IM Lup Teague NA 12-m 7
16:48:50 18:18:00 2019.1.00195.L 46677_a_06_7M ALMAGAL: ALMA Evolutionary study Molinari of High Mass Protocluster Formation in the Galaxy EA EU NA 7-m 6
17:07:56 18:06:56 2019.1.00195.L 108933_a_06_TM2 ALMAGAL: ALMA Evolutionary study Molinari of High Mass Protocluster Formation in the Galaxy EA EU NA 12-m 6
18:18:07 19:38:10 2019.1.00994.S M17SW_a_06_7M Why is there a 400 K cloud of C3H+ in Lipnicky M17SW? NA 7-m 6
18:36:34 18:53:11 2019.1.01728.S Gaia_17b_b_06_TM2 Gaia 17bp: the circumstellar environment of a new FU Ori-type object Cruz-Saenz de Miera OTHER 12-m 6
18:54:13 19:41:57 2019.1.01517.S HD_18291_a_06_TM1 Gas around MS stars: A common exocometary origin for hot and cold gas Rebolledo EU 12-m 6
20:10:57 21:21:00 2019.1.01556.S SDC13_a_03_TM2 On the universality of fibres in star-forming filaments Williams EU 12-m 3
21:30:54 22:25:29 2019.1.01450.S FRB181111_a_06_TM1 The molecular gas content of the host Tejos galaxies of Fast Radio Bursts CL 12-m 6
22:21:17 23:41:16 2019.1.00673.S RCS_J231_a_03_7M The highest resolution imaging of the Sunyaev-Zel'dovich effect at z~1 Kitayama EA 7-m 3
22:26:30 23:20:42 2019.1.01450.S FRB181111_a_06_TM1 The molecular gas content of the host Tejos galaxies of Fast Radio Bursts CL 12-m 6
23:26:04 23:51:42 2019.1.01450.S FRB180922_a_06_TM1 The molecular gas content of the host Tejos galaxies of Fast Radio Bursts CL 12-m 6
23:44:59 01:15:11 2019.1.01251.S Q0107+03_a_04_7M SUPERCOLD-CGM: a high-z survey of molecular gas across the circum-galactic medium of Enormous Lya Nebulae Emonts NA 7-m 4
23:52:53 00:56:13 2018.1.00035.S RXCJ0032_b_06_TM1 ALMA Lensing Cluster Survey Kohno CL EA EU NA 12-m 6

2019-11-27
Start (UT) End (UT) Project Code SchedBlock Project Title PI Executive Array Band
00:57:26 01:52:45 2019.1.01634.L XMM1-Z_2_a_06_TM1 REBELS: An ALMA Large Program Bouwens CL EA EU NA 12-m 6

to Discover the Most Luminous [CII]-[OIII] Galaxies in the Reionization Epoch

M.33 t_06_7M

ACO (2-1) mapping toward the nearest spiral galaxy M 33

Muraoka

EA

7-m

6

REBELS: An ALMA Large Program to Bouwens Discover the Most Luminous [CII]-[OIII] Galaxies in the Reionization Epoch

XMM1-159_a_06_TM1

CL EA EU NA

12-m

6

WISDOM: Constraining the scatter in the M-sigma relation at fixed velocity dispersion

NGC1497_a_06_7M

EU

7-m

6

SODA: a flux-limited Survey of Orion's van Terwisga Disks with ALMA

M12_176_a_06_TM1

EU

12-m

6

The effects of feedback on molecular gas: Survey of CO in 30 Doradus

30_Dorad_c_06_7M

NA

7-m

6

SODA: a flux-limited Survey of Orion's van Terwisga Disks with ALMA

M12_176_a_06_TM1

EU

12-m

6

The effects of feedback on molecular gas: Survey of CO in 30 Doradus

30_Dorad_d_06_TP

Wong

NA

Total Power

6

AC Mapping of the Star-Forming Northern Tip of the Large Magellanic Cloud Molecular Ridge

North_Mo_b_06_7M

NA

7-m

6

Deep CO(J=1-0) mapping survey of 103 Eridanus supergroup galaxies with Morita array

ESO_482G_a_03_7M

Morokuma

EA

7-m

3

The effects of feedback on molecular gas: Survey of CO in 30 Doradus

30_Dorad_e_06_TM1

Wong

NA

Total Power

6

First D/H ratio for an interstellar comet: A window into the chemical complexity of protoplanetary system

Borisov_a_05_TM1

Jensen

EU

12-m

5

VERTICO: The Virgo Environment Traced in CO

NGC_4380_a_06_TP

Brown

EA EU NA

Total Power

6

Comprehensive study of the physical conditions of the molecular gas in the inner 5-7 kpc of two star-forming galaxies

NGC4321_a_08_7M

Liu

EU

7-m

8

First D/H ratio for an interstellar comet: A window into the chemical complexity of protoplanetary system

Borisov_a_05_TM1

Jensen

EU

12-m

5

VERTICO: The Virgo Environment Traced in CO

NGC_4380_a_06_TP

Brown

EA EU NA

Total Power

6

First D/H ratio for an interstellar comet: A window into the chemical complexity of protoplanetary system

Borisov_a_05_TM1

Jensen

EU

12-m

5

ALMAGAL: ALMA Evolutionary study of High Mass Protocluster Formation in the Galaxy

702472_a_06_7M

Molinari

EA EU NA

7-m

6

VERTICO: The Virgo Environment Traced in CO

NGC_4380_a_06_TP

Brown

EA EU NA

Total Power

6

PHANGS-CMZs: Uncovering the Lifecycle of Galactic Nuclei by Mapping Extragalactic 'Central Molecular Zones'

NGC5248_a_07_TM2

Chevance

EU

12-m

7

VERTICO: The Virgo Environment Traced in CO

NGC_4772_a_06_7M

Brown

EA EU NA

7-m

6

Emission mechanism of the gamma-ray binary PSR B1259-"
<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:29:04</td>
<td>01:04:31</td>
<td>SDSSJ013_a_07_TM1</td>
<td>The Host Galaxies of the Radio-Loud Quasars at z>5</td>
<td>Mazzucchelli</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>00:46:31</td>
<td>01:45:45</td>
<td>M_33_t_06_7M</td>
<td>ACA CO(2-1) mapping toward the nearest spiral galaxy M 33</td>
<td>Muraoka</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>01:04:38</td>
<td>02:12:50</td>
<td>XMM-J-35_b_07_TM1</td>
<td>REBELS: An ALMA Large Program to Discover the Most Luminous (CII)+[OIII] Galaxies in the Reionization Epoch</td>
<td>CL</td>
<td>EA EU NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>01:58:46</td>
<td>03:00:40</td>
<td>M_33_d_06_7M</td>
<td>ACA CO(2-1) mapping toward the nearest spiral galaxy M 33</td>
<td>Muraoka</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>02:25:52</td>
<td>03:35:23</td>
<td>SPT0311-_a_07_TM1</td>
<td>The Formation of Massive Galaxies in Marrone the Reionization Era</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:04:38</td>
<td>06:04:41</td>
<td>04016+26_a_07_7M</td>
<td>A Complete Survey of Protostellar Disk Gas and Dust Structure in Taurus</td>
<td>Sheehan</td>
<td>NA</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>04:05:30</td>
<td>04:49:39</td>
<td>SPT0529-_a_09_TM1</td>
<td>Resolving water emission and dust temperature in the early universe</td>
<td>Vieira</td>
<td>NA</td>
<td>12-m</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>04:06:10</td>
<td>05:39:56</td>
<td>Horsehea_a_07_TP</td>
<td>Photo-erosion of molecular clouds: The Horsehead</td>
<td>Guzman</td>
<td>CL</td>
<td>Total Power</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>04:56:14</td>
<td>05:23:16</td>
<td>04489+30_a_07_TM2</td>
<td>A Complete Survey of Protostellar Disk Gas and Dust Structure in Taurus</td>
<td>Sheehan</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>05:23:22</td>
<td>06:41:16</td>
<td>Horsehea_a_07_TM1</td>
<td>Photo-erosion of molecular clouds: The Horsehead</td>
<td>Guzman</td>
<td>CL</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>06:34:50</td>
<td>08:38:46</td>
<td>A1_a_10_7M</td>
<td>The molecular cloud structure in the low-metallicity environment of 30 Doradus</td>
<td>Chevance</td>
<td>EU</td>
<td>7-m</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>06:41:22</td>
<td>07:23:55</td>
<td>RN80_a_07_TM1</td>
<td>Deep CO (3-2) and continuum survey of Rosette Nebula globulets</td>
<td>CL</td>
<td>12-m</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:24:02</td>
<td>08:34:44</td>
<td>B14-6566_a_07_TM1</td>
<td>Constraining the nitrogen abundance in a bright z=7 galaxy</td>
<td>Inoue</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>08:34:50</td>
<td>09:43:08</td>
<td>B14-6566_a_07_TM1</td>
<td>Constraining the nitrogen abundance in a bright z=7 galaxy</td>
<td>Inoue</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>08:46:41</td>
<td>10:44:18</td>
<td>COS.0019_a_08_7M</td>
<td>On the Spectral Energy Distribution of Zavala Dusty, Star-Forming Galaxies: the nature of the dust temperature evolution.</td>
<td>NA</td>
<td>7-m</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:50:56</td>
<td>09:58:23</td>
<td>NGC_4216_a_06_TP</td>
<td>VERTICO: The Virgo Environment Traced in CO</td>
<td>Brown</td>
<td>EA EU NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
2019-11-29

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:13:14</td>
<td>01:14:54</td>
<td>2018.A.00058.S</td>
<td>M_33_d_06_7M</td>
<td>ACA CO(2-1) mapping toward the nearest spiral galaxy M 33</td>
<td>Muraoka</td>
<td>EA</td>
<td>EU</td>
<td>NA</td>
</tr>
<tr>
<td>01:27:49</td>
<td>02:29:31</td>
<td>2018.A.00058.S</td>
<td>M_33_d_06_7M</td>
<td>ACA CO(2-1) mapping toward the nearest spiral galaxy M 33</td>
<td>Muraoka</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>02:29:39</td>
<td>03:47:10</td>
<td>2019.1.00722.S</td>
<td>NGC1232_a_03_7M</td>
<td>Deep CO(J=1-0) mapping survey of 103 Eridanus supergroup galaxies with Morita array</td>
<td>Morokuma</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dusty, Star-Forming Galaxies: the nature of the dust temperature

The effects of feedback on molecular gas: Survey of CO in 30 Doradus

A Complete Survey of Protostellar Disk Gas and Dust Structure in Taurus

The effects of feedback on molecular gas: Survey of CO in 30 Doradus

The Horsehead

Photo-erosion of molecular clouds: The Horsehead

BOPS: B-field Orion Protostellar Survey

The effects of feedback on molecular gas: Survey of CO in 30 Doradus

On the Spectral Energy Distribution of Zavala Dusty, Star-Forming Galaxies: the nature of the dust temperature evolution.

REBELS: An ALMA Large Program to Bouwens Discover the Most Luminous [CII]+[OIII] Galaxies in the Reionization Epoch

Physics at High Angular Resolution in Faesi Nearby Galaxies: The Local Galaxy Inventory Continued

REBELS: An ALMA Large Program to Bouwens Discover the Most Luminous [CII]+[OIII] Galaxies in the Reionization Epoch

The first measurement of metallicity and ISM conditions of a normal galaxy at reionisation

2019-11-30

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>03:31:05</td>
<td>04:43:17</td>
<td>2019.1.00063.S</td>
<td>T_Tau_a_07_TP</td>
<td>The kilo-au environments of T Tauri stars</td>
<td>Williams</td>
<td>NA</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>04:43:23</td>
<td>06:36:22</td>
<td>2019.1.00558.S</td>
<td>Horsehea_a_07_TP</td>
<td>Photo-erosion of molecular clouds: The Horsehead</td>
<td>Guzman</td>
<td>CL</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>06:38:39</td>
<td>08:26:21</td>
<td>2019.1.00558.S</td>
<td>Horsehea_a_07_TP</td>
<td>Photo-erosion of molecular clouds: The Horsehead</td>
<td>Guzman</td>
<td>CL</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>08:41:49</td>
<td>10:39:09</td>
<td>2019.1.01832.S</td>
<td>COS.0019_a_08_TP</td>
<td>On the Spectral Energy Distribution of Zavala Dusty, Star-Forming Galaxies: the nature of the dust temperature evolution.</td>
<td>NA</td>
<td>7-m</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
gas: Survey of CO in 30 Doradus
The effects of feedback on molecular
gas: Survey of CO in 30 Doradus

The Kinematical Transition between
Gas: Survey of CO in 30 Doradus
The effects of feedback on molecular
Gas: Survey of CO in 30 Doradus

REBELS: An ALMA Large Program to
Discover the Most Luminous
[CII]+[OIII] Galaxies in the
Reionization Epoch

Characterizing Absorption-Selected
galaxies at High-z (CASH) Survey
Characterizing Absorption-Selected
galaxies at High-z (CASH) Survey
The highest resolution imaging of the
Sunyaev-Zel'dovich effect at z~1
The highest resolution imaging of the
Sunyaev-Zel'dovich effect at z~1

REBELS: An ALMA Large Program to
Discover the Most Luminous
[CII]+[OIII] Galaxies in the
Reionization Epoch

Characterizing Absorption-Selected
galaxies at High-z (CASH) Survey
Characterizing Absorption-Selected
galaxies at High-z (CASH) Survey
The effects of feedback on molecular
gas: Survey of CO in 30 Doradus
The effects of feedback on molecular
gas: Survey of CO in 30 Doradus

The Kinematical Transition between
the Envelope and Core around Young
Embedded Protostars
The Kinematical Transition between
the Envelope and Core around Young
Embedded Protostars

The Molecular Gas Content of the Host Tejos
galaxies of Fast Radio Bursts
The Molecular Gas Content of the Host Tejos
galaxies of Fast Radio Bursts

Vertico: The Virgo Environment
Traced in CO

REBELS: An ALMA Large Program to
Discover the Most Luminous
[CII]+[OIII] Galaxies in the
Reionization Epoch
REBELS: An ALMA Large Program to
Discover the Most Luminous
[CII]+[OIII] Galaxies in the
Reionization Epoch

ACA CO(2-1) mapping toward the
nearest spiral galaxy M 33
ACA CO(2-1) mapping toward the
nearest spiral galaxy M 33

Characterizing Absorption-Selected
galaxies at High-z (CASH) Survey
Characterizing Absorption-Selected
galaxies at High-z (CASH) Survey
The highest resolution imaging of the
Sunyaev-Zel'dovich effect at z~1
The highest resolution imaging of the
Sunyaev-Zel'dovich effect at z~1

Revealing the Diversity of Jets and
Outflows in Tidal Disruption Events
with ALMA
Revealing the Diversity of Jets and
Outflows in Tidal Disruption Events
with ALMA

The effects of feedback on molecular
gas: Survey of CO in 30 Doradus
The effects of feedback on molecular
gas: Survey of CO in 30 Doradus
The effects of feedback on molecular
gas: Survey of CO in 30 Doradus
The effects of feedback on molecular
gas: Survey of CO in 30 Doradus

The Molecular Gas Content of the Host Tejos
galaxies of Fast Radio Bursts
The Molecular Gas Content of the Host Tejos
galaxies of Fast Radio Bursts

Bally
Bally

Rafelski
Rafelski

Kitayama
Kitayama

Muraoka
Muraoka

Brown
Brown

Wong
Wong

Alexander
Alexander

Espaillat
Espaillat

Bouwens
Bouwens

NA
NA

Total Power
Total Power

Band: 6
Band: 6

Array: 7-m
Array: 7-m

Project Code: 2019.1.00058.S
Project Code: 2019.1.00639.S

Project Title: ACA CO(2-1) mapping toward the nearest spiral galaxy M 33
Project Title: REBELS: An ALMA Large Program to Discover the Most Luminous [CII]+[OIII] Galaxies in the Reionization Epoch

Executional: NA
Executional: EA

7-m
12-m

2019-12-01
2019-12-01

00:51:16
00:51:16

01:01:55
01:01:55

01:52:11
01:52:11

02:32:13
02:32:13

02:53:52
02:53:52

03:06:12
03:06:12

03:44:36
03:44:36

04:17:46
04:17:46

04:18:07
04:18:07

04:27:05
04:27:05

04:40:48
04:40:48

05:32:02
05:32:02

12-m
12-m

7-m
7-m

Total Power
Total Power

12-m
12-m

6
6

7-m
7-m

6
6

6
6

6
6
Deep CO(J=1-0) mapping survey of 103 Eridanus supergroup galaxies with Morokuma EA 7-m 3
SODA: a flux-limited Survey of Orion's van Terwisga EU 12-m 6
SODA: a flux-limited Survey of Orion's van Terwisga EU 12-m 6
REBELS: An ALMA Large Program to Bouwens CL EA EU NA 12-m 6
REBELS: An ALMA Large Program to Bouwens CL EA EU NA 12-m 6
A GEMS CO follow-up survey of IC 1459 group and NGC 4636 group Lee EA 7-m 3
SUPERCOLD-CGM: a high-z survey of molecular gas across the circum-galactic medium of Enormous Lya Nebulae Emonts NA 12-m 4
SUPERCOLD-CGM: a high-z survey of molecular gas across the circum-galactic medium of Enormous Lya Nebulae Emonts NA 7-m 4
AGN Before and After: Towards a balanced view of the link between circumnuclear gas and nuclear black hole activity Rosario EU 12-m 6
Gas around MS stars: A common exocometary origin for hot and cold gas Rebolledo EU 12-m 6
SUPERCOLD-CGM: a high-z survey of molecular gas across the circum-galactic medium of Enormous Lya Nebulae Emonts NA 7-m 4
Bulge Asymmetries and Dynamical Evolution (BAaDE) IV Sjouwerman NA 12-m 3
SUPERCOLD-CGM: a high-z survey of molecular gas across the circum-galactic medium of Enormous Lya Nebulae Emonts NA 7-m 4
Bulge Asymmetries and Dynamical Evolution (BAaDE) IV Sjouwerman NA 12-m 3
On the universality of fibres in star forming filaments Williams EU Total Power 3
ALMAGAL: ALMA Evolutionary study of High Mass Protocluster Formation in the Galaxy Molinari EA EU NA 7-m 6
Localized Feedback Processes in the Galactic CMZ Candelaria NA Total Power 3
Bulge Asymmetries and Dynamical Evolution (BAaDE) IV Sjouwerman NA 12-m 3
On the universality of fibres in star forming filaments Williams EU 7-m 3
On the universality of fibres in star forming filaments Williams EU 12-m 3
On the universality of fibres in star forming filaments Williams EU Total Power 3
Localized Feedback Processes in the Galactic CMZ Candelaria NA 7-m 3
On the universality of fibres in star forming filaments Williams EU 12-m 3
On the universality of fibres in star forming filaments Williams EU Total Power 3
On the universality of fibres in star forming filaments Williams EU 7-m 3
Identifying a SMG in the EoR Umehata EA 12-m 3
The Third Leg of Galaxy Stellar Mass Webb Assembly: A Census of CO in high-redshift cluster centrals NA 12-m 4
The Third Leg of Galaxy Stellar Mass Webb Assembly: A Census of CO in high-redshift cluster centrals NA 12-m 4
<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:19:06</td>
<td>02:54:47</td>
<td>2019.1.00722.S</td>
<td>2MASX_J0_a_03_7M</td>
<td>Deep CO(J=1-0) mapping survey of 103 Eridanus supergroup galaxies with Morita array</td>
<td>Morokuma</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>02:39:34</td>
<td>02:59:58</td>
<td>2019.1.01529.S</td>
<td>CDFS-3_a_04_TM1</td>
<td>The Third Leg of Galaxy Stellar Mass Assembly: A Census of CO in high-redshift cluster centrals</td>
<td>Webb</td>
<td>NA</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>03:01:52</td>
<td>03:56:23</td>
<td>2019.1.01132.S</td>
<td>NGC1482_a_03_TM2</td>
<td>Molecular gas in the starburst-driven superwind of NGC 1482</td>
<td>Salak</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>03:03:30</td>
<td>04:02:49</td>
<td>2019.1.01132.S</td>
<td>NGC1482_a_03_7M</td>
<td>Molecular gas in the starburst-driven superwind of NGC 1482</td>
<td>Salak</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>04:09:55</td>
<td>04:32:32</td>
<td>2019.1.01437.S</td>
<td>GM_Aur_b_06_TM1</td>
<td>An ALMA-TESS study of UV heating in protoplanetary disks</td>
<td>Espaillat</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>04:15:06</td>
<td>05:25:20</td>
<td>2019.1.00722.S</td>
<td>ESO_548-a_03_7M</td>
<td>Deep CO(J=1-0) mapping survey of 103 Eridanus supergroup galaxies with Morita array</td>
<td>Morokuma</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>05:40:02</td>
<td>06:54:15</td>
<td>2019.1.00722.S</td>
<td>ESO_548-a_03_7M</td>
<td>Deep CO(J=1-0) mapping survey of 103 Eridanus supergroup galaxies with Morita array</td>
<td>Morokuma</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>06:01:18</td>
<td>07:00:59</td>
<td>2019.1.01813.S</td>
<td>M12_1000_a_06_TM1</td>
<td>SODA: a flux-limited Survey of Orion's van Terwisga Disks with ALMA</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>07:02:09</td>
<td>08:01:06</td>
<td>2019.1.01813.S</td>
<td>M12_1000_a_06_7M</td>
<td>SODA: a flux-limited Survey of Orion's van Terwisga Disks with ALMA</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>07:56:56</td>
<td>09:54:18</td>
<td>2019.1.01832.S</td>
<td>COS.0019_a_08_7M</td>
<td>On the Spectral Energy Distribution of Zavala Dusty, Star-Forming Galaxies: the nature of the dust temperature evolution.</td>
<td>NA</td>
<td>7-m</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>08:01:13</td>
<td>08:36:41</td>
<td>2019.1.00840.S</td>
<td>PSO135+1_a_07_TM1</td>
<td>The Host Galaxies of the Radio-Loud Quasars at z>5</td>
<td>Mazzucchelli</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>09:54:27</td>
<td>11:51:55</td>
<td>2019.1.01832.S</td>
<td>COS.0019_a_08_7M</td>
<td>On the Spectral Energy Distribution of Zavala Dusty, Star-Forming Galaxies: the nature of the dust temperature evolution.</td>
<td>NA</td>
<td>7-m</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>11:00:20</td>
<td>12:07:51</td>
<td>2019.1.00763.L</td>
<td>NGC_4302_a_06_TP</td>
<td>VERTICO: The Virgo Environment Traced in CO</td>
<td>Brown</td>
<td>EA EU NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
</tbody>
</table>