2020-01-06

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>22:12:11</td>
<td>23:07:51</td>
<td>2019.2.00028.S</td>
<td>UGC01368_a_06_7M</td>
<td>A Representative Interferometric Survey of Galaxies in the z=0 Universe with Full IFU Spectroscopic Coverage: EDGE</td>
<td>Bolatto</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>22:18:09</td>
<td>23:08:01</td>
<td>2019.2.00097.S</td>
<td>2MASS_J0_a_03_TP</td>
<td>Probing the physical and chemical structure of dense cores: toward understanding methanol formation</td>
<td>Harsono</td>
<td>EA</td>
<td>Total Power</td>
<td>3</td>
</tr>
</tbody>
</table>

2020-01-07

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>02:17:51</td>
<td>03:31:11</td>
<td>2019.2.00096.S</td>
<td>IC443_c_06_TP</td>
<td>A study of molecular clouds interacting with cosmic rays in the supernova remnant IC 443</td>
<td>Kokusho</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>04:13:44</td>
<td>05:20:14</td>
<td>2019.2.00232.S</td>
<td>G224.4-0_b_06_TP</td>
<td>Confront the idea of 3D projection effects of chemicals in a cold clump with high resolution mapping.</td>
<td>Ge</td>
<td>CL</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>04:18:47</td>
<td>05:13:37</td>
<td>2019.2.00120.S</td>
<td>IRAS_061_a_07_7M</td>
<td>The Nearby Evolved Stars Survey: quantifying the gas and dust return to the Galactic interstellar medium</td>
<td>Scicluna</td>
<td>EA</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>05:14:31</td>
<td>06:07:13</td>
<td>2019.2.00098.S</td>
<td>SDSS_074_a_06_7M</td>
<td>Triggering and supression of star formation in recent gas-rich minor mergers</td>
<td>Davis</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>05:21:08</td>
<td>06:46:06</td>
<td>2019.2.00062.S</td>
<td>Mon_R2_a_06_TP</td>
<td>Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: I-C3H+</td>
<td>Lipnicky</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>06:08:09</td>
<td>07:01:53</td>
<td>2019.2.00120.S</td>
<td>IRAS_082_a_07_7M</td>
<td>The Nearby Evolved Stars Survey: quantifying the gas and dust return to the Galactic interstellar medium</td>
<td>Scicluna</td>
<td>EA</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>06:47:04</td>
<td>07:36:24</td>
<td>2019.2.00097.S</td>
<td>2MASS_J0_b_04_TP</td>
<td>Probing the physical and chemical structure of dense cores: toward understanding methanol formation</td>
<td>Harsono</td>
<td>EA</td>
<td>Total Power</td>
<td>4</td>
</tr>
<tr>
<td>08:06:47</td>
<td>09:25:54</td>
<td>2019.1.00763.L</td>
<td>NGC_4294_a_06_7M</td>
<td>VERTICO: The Virgo Environment Traced in CO</td>
<td>Brown</td>
<td>EA EU NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>08:09:31</td>
<td>09:22:35</td>
<td>2019.2.00166.S</td>
<td>Musca_e_06_TP</td>
<td>Velocity and density power spectra along the Musca filament: Hints to the origin of the star formation properties</td>
<td>Arzoumanian</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>09:24:49</td>
<td>10:36:47</td>
<td>2019.2.00166.S</td>
<td>Musca_e_06_TP</td>
<td>Velocity and density power spectra along the Musca filament: Hints to the origin of the star formation properties</td>
<td>Arzoumanian</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>09:34:04</td>
<td>10:48:46</td>
<td>2019.1.00763.L</td>
<td>NGC_4294_a_06_7M</td>
<td>VERTICO: The Virgo Environment Traced in CO</td>
<td>Brown</td>
<td>EA EU NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>10:41:23</td>
<td>12:01:27</td>
<td>2018.1.01381.S</td>
<td>iras1629_a_07_TP</td>
<td>The nature of the IRAS16293-2422 outflow and its impact on protostellar chemistry</td>
<td>Kristensen</td>
<td>EU</td>
<td>Total Power</td>
<td>7</td>
</tr>
<tr>
<td>10:48:53</td>
<td>11:36:41</td>
<td>2019.1.000000.T</td>
<td>PKS_1413_07_7M</td>
<td>Gravitational millilensing as a tool for studying the microarcsec-scale structure in PKS1413+135</td>
<td>Kiehlmann</td>
<td>OTHER</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>12:09:19</td>
<td>13:36:47</td>
<td>2018.1.01381.S</td>
<td>iras1629_a_07_TP</td>
<td>The nature of the IRAS16293-2422 outflow and its impact on protostellar chemistry</td>
<td>Kristensen</td>
<td>EU</td>
<td>Total Power</td>
<td>7</td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>----</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>01:45:25</td>
<td>03:19:54</td>
<td>2019.2.00094.S</td>
<td>ORS-2_a_07_7M</td>
<td>Are There High-mass Prestellar Cores in Orion?</td>
<td>Wang</td>
<td>OTHER</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>03:20:01</td>
<td>04:54:53</td>
<td>2019.2.00094.S</td>
<td>ORS-2_a_07_7M</td>
<td>Are There High-mass Prestellar Cores in Orion?</td>
<td>OTHER</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>04:42:06</td>
<td>05:53:31</td>
<td>2019.1.01142.S</td>
<td>mosdef_2_a_06_TM1</td>
<td>A unique study of dust, metals, gas, and star formation in typical galaxies at z=2</td>
<td>Shivaei</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>04:55:00</td>
<td>06:20:41</td>
<td>2019.2.00028.S</td>
<td>NGC2449_a_06_7M</td>
<td>A Representative Interferometric Survey of Galaxies in the z=0 Universe with Full IFU Spectroscopic Coverage: EDGE</td>
<td>Bolatto</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>06:20:24</td>
<td>06:36:55</td>
<td>2019.1.00507.S</td>
<td>CW_Leo_a_06_TM1</td>
<td>Monitor 1.1mm line variability in IRC +10216 (IV).</td>
<td>He</td>
<td>CL</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>06:29:44</td>
<td>07:52:10</td>
<td>2019.2.00052.S</td>
<td>NGC2859_a_03_TP</td>
<td>Systematically Measuring CO emission of Double-Barred Galaxies</td>
<td>Wu</td>
<td>EA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>06:37:02</td>
<td>07:01:12</td>
<td>2019.1.01484.T</td>
<td>GRB_1912_d2_03_TM1</td>
<td>Gamma-ray Burst Physics with ALMA: Direct Implications for the Explosions and Progenitors</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>07:01:19</td>
<td>08:04:20</td>
<td>2019.1.00205.S</td>
<td>BR1202-0_b_03_TM1</td>
<td>Physical conditions and chemical processes of the ISM at high redshift: a line survey towards BR1202-0725</td>
<td>Yang</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>07:28:28</td>
<td>08:27:47</td>
<td>2019.2.00037.S</td>
<td>IC_2545_a_06_7M</td>
<td>An ALMA CO(2-1) ACA Survey of Luminous Infrared Galaxies in GOALS</td>
<td>Evans</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>07:52:17</td>
<td>09:08:06</td>
<td>2019.2.00134.S</td>
<td>NGC_3621_a_03_TP</td>
<td>An ACA Survey of Dense Gas in Nearby Galaxies</td>
<td>Usero</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>08:04:26</td>
<td>09:07:20</td>
<td>2019.1.00205.S</td>
<td>BR1202-0_b_03_TM1</td>
<td>Physical conditions and chemical processes of the ISM at high redshift: a line survey towards BR1202-0725</td>
<td>Yang</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>08:31:54</td>
<td>09:01:53</td>
<td>2019.2.00155.S</td>
<td>HerBS-10_b_03_7M</td>
<td>The home stretch: Completing the redshift catalogue of a large flux-limited high-redshift Herschel sample</td>
<td>Baks</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>09:02:18</td>
<td>10:34:29</td>
<td>2019.1.01251.S</td>
<td>Q1228+31_a_04_7M</td>
<td>SUPERCOLD-CGM: A high-z survey of molecular gas across the circum-galactic medium of</td>
<td>Emonts</td>
<td>NA</td>
<td>7-m</td>
<td>4</td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>----</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>09:07:26</td>
<td>10:09:55</td>
<td>2019.1.00205.S</td>
<td>BR1202-0_c_03_TM1</td>
<td>Enormous Lya Nebulae</td>
<td>Yang</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>09:08:13</td>
<td>10:20:10</td>
<td>2019.2.00166.S</td>
<td>Musca_c_06_TP</td>
<td>Velocity and density power spectra along the Musca filament: Hints to the origin of the star formation properties</td>
<td>Arzoumanian</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>10:10:02</td>
<td>11:12:26</td>
<td>2019.1.00205.S</td>
<td>BR1202-0_c_03_TM1</td>
<td>Physical conditions and chemical processes of the ISM at high redshift: a line survey towards BR1202-0725</td>
<td>Yang</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>10:20:17</td>
<td>11:30:37</td>
<td>2019.2.00166.S</td>
<td>Musca_c_06_TP</td>
<td>Velocity and density power spectra along the Musca filament: Hints to the origin of the star formation properties</td>
<td>Arzoumanian</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>10:34:36</td>
<td>11:56:41</td>
<td>2019.1.00763.L</td>
<td>NGC_4772_a_06_7M</td>
<td>VERTICO: The Virgo Environment Traced in CO</td>
<td>Brown</td>
<td>EA EU NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>14:20:34</td>
<td>14:37:07</td>
<td>2019.1.01532.S</td>
<td>Sun1_B7_a_07_TP</td>
<td>3D Structure of the Quiet Solar Chromosphere</td>
<td>Bastian</td>
<td>NA</td>
<td>Total Power</td>
<td>7</td>
</tr>
<tr>
<td>14:24:59</td>
<td>16:29:22</td>
<td>2019.1.01532.S</td>
<td>Sun1_B7_a_07_INT</td>
<td>3D Structure of the Quiet Solar Chromosphere</td>
<td>Bastian</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>14:37:13</td>
<td>14:53:00</td>
<td>2019.1.01532.S</td>
<td>Sun1_B7_a_07_TP</td>
<td>3D Structure of the Quiet Solar Chromosphere</td>
<td>Bastian</td>
<td>NA</td>
<td>Total Power</td>
<td>7</td>
</tr>
<tr>
<td>14:56:30</td>
<td>15:12:20</td>
<td>2019.1.01532.S</td>
<td>Sun1_B7_a_07_TP</td>
<td>3D Structure of the Quiet Solar Chromosphere</td>
<td>Bastian</td>
<td>NA</td>
<td>Total Power</td>
<td>7</td>
</tr>
<tr>
<td>16:57:35</td>
<td>18:27:37</td>
<td>2019.1.01556.S</td>
<td>SDC13_a_03_7M</td>
<td>On the universality of fibres in star forming filaments</td>
<td>Williams</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>17:45:57</td>
<td>18:33:29</td>
<td>2019.1.01422.S</td>
<td>J2031+12_a_03_TM1</td>
<td>Molecular gas properties of HI 21-cm absorption-selected galaxies at 1<z<2</td>
<td>Dutta</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>18:27:46</td>
<td>19:57:50</td>
<td>2019.1.01556.S</td>
<td>SDC13_a_03_7M</td>
<td>On the universality of fibres in star forming filaments</td>
<td>Williams</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>18:59:13</td>
<td>19:43:13</td>
<td>2019.1.01422.S</td>
<td>J2358-10_a_03_TM1</td>
<td>Molecular gas properties of HI 21-cm absorption-selected galaxies at 1<z<2</td>
<td>Dutta</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>19:43:19</td>
<td>20:28:03</td>
<td>2019.1.01190.S</td>
<td>MCG-03-0_a_03_TM1</td>
<td>Mapping the Ionizing Photon Rates from Luminous Starburst Galaxies in the local Universe</td>
<td>Linden</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>20:05:29</td>
<td>21:02:25</td>
<td>2019.2.00028.S</td>
<td>VV488NED_a_06_7M</td>
<td>A Representative Interferometric Survey of Galaxies in the z=0 Universe with Full IFU Spectroscopic Coverage: EDGE</td>
<td>Bolatto</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>20:28:08</td>
<td>21:18:21</td>
<td>2019.1.00313.S</td>
<td>SSA.0001_a_04_TM1</td>
<td>Needle in a haystack: Identifying the highest-redshift candidate DSFGs using 2mm imaging</td>
<td>Casey</td>
<td>NA</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>21:38:40</td>
<td>22:45:33</td>
<td>2019.1.01178.S</td>
<td>8083-610_a_03_TM1</td>
<td>Why star formation is suppressed in green valley galaxies?</td>
<td>Lin</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>23:48:51</td>
<td>01:21:56</td>
<td>2019.2.00167.S</td>
<td>L1448-C_a_04_7M</td>
<td>Grain growth in the youngest protostellar envelopes: the pristine properties of star and planet-forming material</td>
<td>Galametz</td>
<td>EU</td>
<td>7-m</td>
<td>4</td>
</tr>
<tr>
<td>23:52:09</td>
<td>01:04:25</td>
<td>2019.2.00097.S</td>
<td>2MASS_J0_a_04_TP</td>
<td>Probing the physical and chemical structure of dense cores: toward understanding methanol formation</td>
<td>Harsono</td>
<td>EA</td>
<td>Total Power</td>
<td>4</td>
</tr>
</tbody>
</table>
01:59:20 03:04:13 2019.1.01178.S 8083-610_a_03_TM1 Why star formation is suppressed in green valley galaxies? Lin EA 12-m 3
02:59:49 04:28:11 2019.2.00062.S Mon_R2_a_06_TP Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: I-C3H+ Lipnicky NA Total Power 6
03:42:32 05:35:43 2019.2.00208.S HD_48370_a_08_7M The first mini-survey for neutral carbon Moor gas in debris disks around G-type stars to test secondary gas disk models OTHER 7-m 8
04:17:16 05:30:24 2019.1.01206.S HD_37306_a_07_TM1 Unveiling the nature of an unusually large gaseous transit in a debris disk Iglesias CL 12-m 7
05:35:50 06:38:28 2019.2.00128.S ID81_a_08_7M A Comprehensive [CII] Survey of Herschel-Selected Starbursts at z=3-6 Riechers NA 7-m 8
05:52:02 06:46:59 2019.1.00801.S R_crt_b_07_TM1 HCN formation in the innermost region of O-rich AGB stars Champion EU 12-m 7
05:53:39 07:19:05 2019.2.00062.S Mon_R2_a_06_TP Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: I-C3H+ Lipnicky NA Total Power 6
06:39:42 07:23:29 2019.2.00032.S HATLAS_R_d_08_7M Capitalising on an ALMA snapshot survey of the 3,083 reddest Herschel sources Ivison EU 7-m 8
06:47:06 07:12:02 2019.1.01016.T GRBpol_b_04_TM1 Radio Polarimetry of GRB Afterglows Urata EA 12-m 4
07:12:09 07:37:47 2019.1.01016.T GRBpol_d_03_TM1 Radio Polarimetry of GRB Afterglows Urata EA 12-m 3
07:19:12 08:34:52 2019.2.00134.S NGC_3621_a_03_TP An ACA Survey of Dense Gas in Nearby Galaxies Usero EU Total Power 3
07:23:36 08:18:50 2019.1.00763.L NGC_4394_a_06_7M VERTICO: The Virgo Environment Traced in CO Brown EA EU NA 7-m 6
07:37:54 09:20:01 2019.1.01008.T Unspecific_a_07_TM1 Direct sublimation vs. gas-phase synthesis: A Comet TOO proposal Miliam NA 12-m 7
08:18:57 09:14:06 2019.1.00763.L NGC_4394_a_06_7M VERTICO: The Virgo Environment Traced in CO Brown EA EU NA 7-m 6
08:34:59 09:47:27 2019.2.00166.S Musca_c_06_TP Velocity and density power spectra along the Musca filament: Hints to the origin of the star formation properties Arzoumanian EU Total Power 6
09:14:13 11:14:29 2019.1.01635.S NGC4321_b_08_7M Comprehensive study of the physical conditions of the molecular gas in the inner 5-7 kpc of two star-forming galaxies Liu EU 7-m 8
09:20:08 11:03:05 2019.1.01008.T Unspecific_a_07_TM1 Direct sublimation vs. gas-phase synthesis: A Comet TOO proposal Miliam NA 12-m 7
09:47:34 10:58:19 2019.2.00166.S Musca_c_06_TP Velocity and density power spectra along the Musca filament: Hints to the origin of the star formation properties Arzoumanian EU Total Power 6
11:03:12 11:36:50 2019.1.01683.S HD_14300_a_07_TM2 Shadows in time: resolving disk surface chemistry using inner disk shadows Bosman EU 12-m 7
2020-01-10

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:12:16</td>
<td>01:28:33</td>
<td>2019.2.00097.S</td>
<td>2MASS_D0_a_04_7M</td>
<td>Probing the physical and chemical structure of dense cores: toward understanding methanol formation</td>
<td>Harsono</td>
<td>EA</td>
<td>7-m</td>
<td>4</td>
</tr>
<tr>
<td>00:00:00</td>
<td>01:23:33</td>
<td>2019.2.00072.S</td>
<td>N79_E_a_06_TP</td>
<td>Filament and high-mass star formation triggered by tidally-driven colliding HI flows in the LMC</td>
<td>Tsuge</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>01:08:19</td>
<td>02:18:48</td>
<td>2019.1.00271.S</td>
<td>MC5-N_a_06_TM1</td>
<td>A very low-mass prestellar core in Taurus: investigation of brown</td>
<td>Tokuda</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>Time</td>
<td>RA</td>
<td>DEC</td>
<td>Object</td>
<td>PI</td>
<td>ALMA Site</td>
<td>Duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01:28:41</td>
<td>02:31:38</td>
<td>2019.2.00246.S</td>
<td>ALESS_67_a_06_7M</td>
<td>dwarf formation</td>
<td>Calistro Rivera</td>
<td>EU 7-m 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01:53:00</td>
<td>03:19:51</td>
<td>2019.2.00062.S</td>
<td>Mon_R2_a_06_TP</td>
<td>Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: I-C3H+</td>
<td>Lipnicky</td>
<td>NA Total Power 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02:35:40</td>
<td>03:46:09</td>
<td>2019.1.00271.S</td>
<td>MC5_N_a_06_TM1</td>
<td>A very low-mass prestellar core in Taurus: investigation of brown dwarf formation</td>
<td>Tokuda</td>
<td>EA 12-m 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02:44:17</td>
<td>04:09:34</td>
<td>2019.2.00190.S</td>
<td>LND1589--a_06_7M</td>
<td>Formation of VLM stars and BD in Lambda Orionis Star Forming Region (LOSF). ACA view of LND1589</td>
<td>Mauco</td>
<td>CL 7-m 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03:19:59</td>
<td>04:05:34</td>
<td>2019.2.00096.S</td>
<td>IC443_c_06_TP</td>
<td>A study of molecular clouds interacting with cosmic rays in the supernova remnant IC 443</td>
<td>Kokusho</td>
<td>EA Total Power 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:02:14</td>
<td>05:12:30</td>
<td>2019.1.01307.S</td>
<td>HATLAS_J_a_05_TM1</td>
<td>The first measurement of the gas-phase metallicity at z=6</td>
<td>Tadaki</td>
<td>EA 12-m 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:05:42</td>
<td>05:31:40</td>
<td>2019.2.00062.S</td>
<td>Mon_R2_a_06_TP</td>
<td>Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: I-C3H+</td>
<td>Lipnicky</td>
<td>NA Total Power 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:09:41</td>
<td>04:47:26</td>
<td>2019.2.00235.S</td>
<td>gam02_Ve_a_06_7M</td>
<td>A legacy survey of Wolf-Rayet star winds</td>
<td>Phillips</td>
<td>EU 7-m 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:52:25</td>
<td>05:51:28</td>
<td>2019.2.00032.S</td>
<td>HATLAS_R_d_05_7M</td>
<td>Capitalising on an ALMA snapshot survey of the 3,083 reddest Herschel sources</td>
<td>Ivison</td>
<td>EU 7-m 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05:30:13</td>
<td>06:39:54</td>
<td>2019.1.01142.S</td>
<td>mosdef_2_a_06_TM1</td>
<td>A unique study of dust, metals, gas, and star formation in typical galaxies at z~2</td>
<td>Shivaei</td>
<td>NA 12-m 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05:31:48</td>
<td>06:45:51</td>
<td>2019.2.00097.S</td>
<td>2MASS_J0_b_04_TP</td>
<td>Probing the physical and chemical structure of dense cores: toward understanding methanol formation</td>
<td>Harsono</td>
<td>EA Total Power 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05:51:35</td>
<td>06:46:46</td>
<td>2019.2.00098.S</td>
<td>SDSS_091_a_06_7M</td>
<td>Triggering and suppression of star formation in recent gas-rich minor mergers</td>
<td>Davis</td>
<td>EU 7-m 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:40:01</td>
<td>07:48:45</td>
<td>2019.1.01142.S</td>
<td>mosdef_2_a_06_TM1</td>
<td>A unique study of dust, metals, gas, and star formation in typical galaxies at z~2</td>
<td>Shivaei</td>
<td>NA 12-m 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:45:58</td>
<td>07:58:49</td>
<td>2019.2.00097.S</td>
<td>2MASS_J0_b_04_TP</td>
<td>Probing the physical and chemical structure of dense cores: toward understanding methanol formation</td>
<td>Harsono</td>
<td>EA Total Power 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:46:53</td>
<td>07:43:29</td>
<td>2019.2.00037.S</td>
<td>IRAS_094_b_06_7M</td>
<td>An ALMA CO(2-1) ACA Survey of Luminous Infrared Galaxies in GOALS</td>
<td>Evans</td>
<td>NA 7-m 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:45:06</td>
<td>08:44:04</td>
<td>2019.2.00032.S</td>
<td>HATLAS_R_f_05_7M</td>
<td>Capitalising on an ALMA snapshot survey of the 3,083 reddest Herschel sources</td>
<td>Ivison</td>
<td>EU 7-m 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:58:57</td>
<td>09:11:56</td>
<td>2019.2.00166.S</td>
<td>Musca_b_06_TP</td>
<td>Velocity and density power spectra along the Musca filament: Hints to the origin of the star formation properties</td>
<td>Arzoumanian</td>
<td>EU Total Power 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:40:19</td>
<td>09:32:03</td>
<td>2019.1.01634.L</td>
<td>UVISTA-Y_b_05_TM1</td>
<td>REBELS: An ALMA Large Program to Bouwens Discover the Most Luminous [CII]+[OIII] Galaxies in the Reionization Epoch</td>
<td>CL EA EU NA</td>
<td>12-m 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:44:11</td>
<td>09:39:23</td>
<td>2019.1.00763.L</td>
<td>IC_3392_a_06_7M</td>
<td>VERTICO: The Virgo Environment Traced in CO</td>
<td>Brown</td>
<td>EA EU NA 7-m 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:12:04</td>
<td>10:23:26</td>
<td>2019.2.00166.S</td>
<td>Musca_b_06_TP</td>
<td>Velocity and density power spectra along the Musca filament: Hints to the origin of the star formation properties</td>
<td>Arzoumanian</td>
<td>EU Total Power 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:43:04</td>
<td>10:29:24</td>
<td>2019.1.01802.S</td>
<td>HE_1104-b_07_TM1</td>
<td>Molecular Outflows in Dusty Gravitationally Lensed QSOs at z=2-5</td>
<td>Butler</td>
<td>EU 12-m 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:23:34</td>
<td>11:33:55</td>
<td>2019.2.00166.S</td>
<td>Musca_b_06_TP</td>
<td>Velocity and density power spectra along the Musca filament: Hints to the origin of the star formation properties</td>
<td>Arzoumanian</td>
<td>EU Total Power 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2020-01-11

Start (UT)	End (UT)	Project Code	SchedBlock	Project Title	PI	Executive	Array	Band
00:24:21 | 01:06:06 | IC_0214_a_03_TM1 | | Mapping the Ionizing Photon Rates from Luminous Starburst Galaxies in the local Universe | Linden | NA | 12-m | 3
00:49:00 | 01:57:18 | 2MASS_J0_a_03_7M | | Probing the physical and chemical structure of dense cores: toward understanding | Harsono | EA | 7-m | 3
The first complete redshift distribution of 3mm-selected sources

A joint ALMA-KMOS program to probe the ISM physics and galaxy evolution at z~2

Mapping the Ionizing Photon Rates from Luminous Starburst Galaxies in the local Universe

Mapping the Ionizing Photon Rates from Luminous Starburst Galaxies in the local Universe

Molecular gas properties of HI 21-cm absorption-selected galaxies at 1<z<2

The life of post-starburst galaxies at z~0.7: constraining the quenching mechanisms from stars and gas

The life of post-starburst galaxies at z~0.7: constraining the quenching mechanisms from stars and gas

Physical conditions and chemical processes of the ISM at high redshift: a line survey towards BR1202-0725

Investigating A Diversity in The Final Evolutions of Massive Stars toward Supernovae

The Hidden Compton Thick Nucleus of the Southern Starburst Galaxy NGC4945

The Hidden Compton Thick Nucleus of the Southern Starburst Galaxy NGC4945

Physical conditions and chemical processes of the ISM at high redshift: a line survey towards BR1202-0725

Mapping the Ionizing Photon Rates from Luminous Starburst Galaxies in the local Universe

Molecular gas properties of HI 21-cm absorption-selected galaxies at 1<z<2

Mapping the Ionizing Photon Rates from Luminous Starburst Galaxies in the local Universe

Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: I-C3H+

Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: I-C3H+

Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: I-C3H+

Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: I-C3H+
03:23:14 04:28:24 2019.1.01422.S J0501-01_a_03_TM1 Molecular gas properties of HI 21-cm absorption-selected galaxies at 1<z<2 Dutta EU 12-m 3
04:09:41 05:24:11 2019.2.00030.S n5_clump_a_03_7M Revealing Chemical Diversity and Chemical Evolution in the NGC2264-D Cluster-Forming Clump Taniguchi EA 7-m 3
04:28:31 04:53:48 2019.1.01190.S IC_0563_a_03_TM1 Mapping the Ionizing Photon Rates from Luminous Starburst Galaxies in the local Universe Linden NA 12-m 3
04:31:27 05:54:08 2019.2.00062.S Mon_R2_a_04_TP Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: I-C3H+ Lipnicky NA Total Power 4
04:53:54 05:47:16 2019.1.00702.S LEGA-C_2_a_04_TM1 The life of post-starburst galaxies at z~0.7: constraining the quenching mechanisms from stars and gas Wu EU 12-m 4
05:24:18 06:58:43 2019.2.00134.S NGC_2997_a_03_7M An ACA Survey of Dense Gas in Nearby Galaxies Usero EU 7-m 3
05:48:02 06:41:14 2019.1.00702.S LEGA-C_2_a_04_TM1 The life of post-starburst galaxies at z~0.7: constraining the quenching mechanisms from stars and gas Wu EU 12-m 4
05:54:14 07:07:54 2019.2.00097.S 2MASS_J0_b_04_TP Probing the physical and chemical structure of dense cores: toward understanding methanol formation Harsono EA Total Power 4
06:41:20 07:44:07 2019.1.00205.S BR1202-0_d_03_TM1 Physical conditions and chemical processes of the ISM at high redshift: a line survey towards BR1202-0725 Yang EU 12-m 3
06:58:50 08:32:24 2019.2.00134.S NGC_2997_a_03_7M An ACA Survey of Dense Gas in Nearby Galaxies Usero EU 7-m 3
07:15:30 08:30:59 2019.2.00134.S NGC_3621_a_03_TP An ACA Survey of Dense Gas in Nearby Galaxies Usero EU Total Power 3
07:44:13 08:46:56 2019.1.00205.S BR1202-0_d_03_TM1 Physical conditions and chemical processes of the ISM at high redshift: a line survey towards BR1202-0725 Yang EU 12-m 3
08:32:30 10:05:23 2019.1.01251.S Q1228+31_a_04_7M SUPERCOLD-CGM: a high-z survey of molecular gas across the circum-galactic medium of Enormous Lya Nebulae Emonts NA 7-m 4
08:34:06 09:49:17 2019.2.00134.S NGC_3621_a_03_TP An ACA Survey of Dense Gas in Nearby Galaxies Usero EU Total Power 3
08:47:03 09:40:57 2019.1.01124.S ngc4550_a_03_TM1 Which way does it go? Molecular gas Young in multi-spin stellar counterrotator galaxies NA 12-m 3
09:41:04 10:34:53 2019.1.01124.S ngc4550_a_03_TM1 Which way does it go? Molecular gas Young in multi-spin stellar counterrotator galaxies NA 12-m 3
10:05:30 10:45:24 2019.2.00194.S J1430+13_a_03_7M Quasar Feedback Survey: The impact Calistro Rivera of jets and outflows on the molecular ISM of quasar host galaxies EU 7-m 3
10:35:00 11:47:33 2019.1.01010.S Core1_a_03_TM1 Tracing Molecular Gas Across the Stages of Accretion onto a Galaxy Cluster at z=1.487 Alberts NA 12-m 3
10:45:30 11:53:06 2019.2.00155.S HerBS-13_f_03_7M The home stretch: Completing the redshift catalogue of a large flux-limited high-redshift Herschel sample Bakx EA 7-m 3
19:55:14 20:55:46 2019.1.00623.S Eyelash_a_03_TM2 Spectral line survey in the rest-frame 350 GHz band toward a lensed sub-mm galaxy at z=2.3 Nishimura EA 12-m 3
19:57:04 21:16:36 2019.2.00236.S NGC253_a_03_7M Mapping NGC253 in dense gas tracers with ACA Beşli EU 7-m 3
21:21:21 21:52:29 2019.1.01190.S NGC_0877_a_03_TM1 Mapping the Ionizing Photon Rates from Luminous Starburst Galaxies in the local Universe Linden NA 12-m 3
2020-01-13

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:06:30</td>
<td>01:30:09</td>
<td>Mon_R2_a_04_TP</td>
<td>12-m</td>
<td>Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: I-C3H+</td>
<td>Lipnicky</td>
<td>NA</td>
<td>Total Power</td>
<td>4</td>
</tr>
<tr>
<td>00:29:16</td>
<td>02:02:27</td>
<td>L1448-C_a_04_7M</td>
<td>7-m</td>
<td>Grain growth in the youngest protostellar envelopes: the pristine properties of star and planet-forming material</td>
<td>Galametz</td>
<td>EU</td>
<td>7-m</td>
<td>4</td>
</tr>
<tr>
<td>01:15:39</td>
<td>02:11:45</td>
<td>SPT0348_a_03_TM1</td>
<td>12-m</td>
<td>SPT z=4-7 protoclusters: cluster membership and dynamics from line observations</td>
<td>Chapman</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>01:57:28</td>
<td>03:19:58</td>
<td>Horsekne_a_06_TP</td>
<td>7-m</td>
<td>Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: I-C3H+</td>
<td>Lipnicky</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>02:11:55</td>
<td>03:20:21</td>
<td>XID_276_d_03_TM1</td>
<td>12-m</td>
<td>ALMA spectroscopic follow-up of high-z low-luminosity AGN candidates in the CDF-S</td>
<td>Vito</td>
<td>CL</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>02:15:40</td>
<td>03:42:42</td>
<td>NGC1482_b_03_7M</td>
<td>7-m</td>
<td>Molecular gas in the starburst-driven superwind of NGC 1482</td>
<td>Salak</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>03:20:04</td>
<td>04:40:50</td>
<td>Horsekne_a_06_TP</td>
<td>7-m</td>
<td>Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: I-C3H+</td>
<td>Lipnicky</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>03:30:16</td>
<td>04:14:26</td>
<td>XID_276_b_03_TM1</td>
<td>7-m</td>
<td>ALMA spectroscopic follow-up of high-z low-luminosity AGN candidates in the CDF-S</td>
<td>Vito</td>
<td>CL</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>03:42:49</td>
<td>04:57:29</td>
<td>n5_clump_a_03_7M</td>
<td>7-m</td>
<td>Revealing Chemical Diversity and Chemical Evolution in the NGC2264-D Cluster-Forming Clump</td>
<td>Taniguchi</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>04:14:42</td>
<td>05:08:37</td>
<td>LEGA-C_2_a_04_TM1</td>
<td>12-m</td>
<td>The life of post-starburst galaxies at z~0.7: constraining the quenching mechanisms from stars and gas</td>
<td>Wu</td>
<td>EU</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>04:40:59</td>
<td>06:03:36</td>
<td>NGC2859_a_03_TP</td>
<td>7-m</td>
<td>Systematically Measuring CO emission of Double-Barred Galaxies</td>
<td>Wu</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>04:57:36</td>
<td>06:31:33</td>
<td>NGC_2997_a_03_7M</td>
<td>7-m</td>
<td>An ACA Survey of Dense Gas in Nearby Galaxies</td>
<td>Usero</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>05:08:57</td>
<td>06:16:08</td>
<td>COSMOS-1_a_03_TM1</td>
<td>12-m</td>
<td>Resolving the molecular and atomic gas content of galaxies beyond the local Universe</td>
<td>Hess</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>06:03:43</td>
<td>07:19:12</td>
<td>NGC_3621_a_03_TP</td>
<td>12-m</td>
<td>An ACA Survey of Dense Gas in Nearby Galaxies</td>
<td>Usero</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>06:16:14</td>
<td>07:23:38</td>
<td>COSMOS-1_a_03_TM1</td>
<td>12-m</td>
<td>Resolving the molecular and atomic gas content of galaxies beyond the local Universe</td>
<td>Hess</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>06:31:38</td>
<td>08:05:13</td>
<td>NGC_2997_a_03_7M</td>
<td>7-m</td>
<td>An ACA Survey of Dense Gas in Nearby Galaxies</td>
<td>Usero</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>07:19:21</td>
<td>08:34:45</td>
<td>NGC_3621_a_03_TP</td>
<td>12-m</td>
<td>An ACA Survey of Dense Gas in Nearby Galaxies</td>
<td>Usero</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>07:32:44</td>
<td>08:40:11</td>
<td>COSMOS-1_a_03_TM1</td>
<td>12-m</td>
<td>Resolving the molecular and atomic gas content of galaxies beyond the local Universe</td>
<td>Hess</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>08:05:20</td>
<td>09:39:13</td>
<td>NGC_2997_a_03_7M</td>
<td>7-m</td>
<td>An ACA Survey of Dense Gas in Nearby Galaxies</td>
<td>Usero</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>08:35:17</td>
<td>10:00:55</td>
<td>NGC_4536_a_03_TP</td>
<td>7-m</td>
<td>An ACA Survey of Dense Gas in Nearby Galaxies</td>
<td>Usero</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>08:40:24</td>
<td>09:34:27</td>
<td>ngc4550_a_03_7M</td>
<td>12-m</td>
<td>Which way does it go? Molecular gas Young in multi-spin stellar counterrotator galaxies</td>
<td>NA</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>09:34:43</td>
<td>10:38:20</td>
<td>8950-127_a_03_TM1</td>
<td>7-m</td>
<td>Why star formation is suppressed in green valley galaxies?</td>
<td>Lin</td>
<td>EA</td>
<td>7-m</td>
<td>4</td>
</tr>
<tr>
<td>09:39:20</td>
<td>11:08:49</td>
<td>Q1228+31_a_04_7M</td>
<td>7-m</td>
<td>SUPERCOLD-CGM: a high-z survey of molecular gas across the circum-galactic medium of Enormous Lya Nebula</td>
<td>Emonts</td>
<td>NA</td>
<td>7-m</td>
<td>4</td>
</tr>
<tr>
<td>Time 1</td>
<td>Time 2</td>
<td>ID</td>
<td>Title</td>
<td>Author(s)</td>
<td>Scope</td>
<td>Total Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>--</td>
<td>-----------</td>
<td>-------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:01</td>
<td>11:15</td>
<td>2019.2.00166.S</td>
<td>Velocity and density power spectra along the Musca filament: Hints to the origin of the star formation properties</td>
<td>Arzoumanian</td>
<td>EU</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:38</td>
<td>11:51</td>
<td>2019.1.01010.S</td>
<td>Tracing Molecular Gas Across the Stages of Accretion onto a Galaxy Cluster at z=1.487</td>
<td>Alberts</td>
<td>NA</td>
<td>12-m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:08</td>
<td>11:47</td>
<td>2019.2.00093.S</td>
<td>Newly discovered hot core precursors: early warm-up phase and diversity</td>
<td>Csengeri</td>
<td>EU</td>
<td>7-m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>