2020-01-06

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>20:54:16</td>
<td>22:12:11</td>
<td>2019.2.00028.S</td>
<td>UGC01368_a_06_7M</td>
<td>A Representative Interferometric Survey of Galaxies in the z=0 Universe with Full IFU Spectroscopic Coverage: EDGE</td>
<td>Bolatto</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>22:18:09</td>
<td>23:08:01</td>
<td>2019.2.00097.S</td>
<td>2MASS_J0_a_03_TP</td>
<td>Probing the physical and chemical structure of dense cores: toward understanding methanol formation</td>
<td>Harsono</td>
<td>EA</td>
<td>Total Power</td>
<td>3</td>
</tr>
</tbody>
</table>

2020-01-07

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>02:17:51</td>
<td>03:31:11</td>
<td>2019.2.00096.S</td>
<td>IC443_c_06_TP</td>
<td>A study of molecular clouds interacting with cosmic rays in the supernova remnant IC 443</td>
<td>Kokusho</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>04:13:44</td>
<td>05:20:14</td>
<td>2019.2.00232.S</td>
<td>G224.4-0_b_06_TP</td>
<td>Confront the idea of 3D projection effects of chemicals in a cold clump with high resolution mapping.</td>
<td>Ge</td>
<td>CL</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>04:18:47</td>
<td>05:13:37</td>
<td>2019.2.00120.S</td>
<td>IRAS_061_a_07_7M</td>
<td>The Nearby Evolved Stars Survey: quantifying the gas and dust return to the Galactic interstellar medium</td>
<td>Scicluna</td>
<td>EA</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>05:14:31</td>
<td>06:07:13</td>
<td>2019.2.00098.S</td>
<td>SDSS_074_a_06_7M</td>
<td>Triggering and supression of star formation in recent gas-rich minor mergers</td>
<td>Davis</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>05:21:08</td>
<td>06:46:06</td>
<td>2019.2.00062.S</td>
<td>Mon_R2_a_06_TP</td>
<td>Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: I-C3H+</td>
<td>Lipnicky</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>06:08:09</td>
<td>07:01:53</td>
<td>2019.2.00120.S</td>
<td>IRAS_082_a_07_7M</td>
<td>The Nearby Evolved Stars Survey: quantifying the gas and dust return to the Galactic interstellar medium</td>
<td>Scicluna</td>
<td>EA</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>06:47:04</td>
<td>07:36:24</td>
<td>2019.2.00097.S</td>
<td>2MASS_J0_b_04_TP</td>
<td>Probing the physical and chemical structure of dense cores: toward understanding methanol formation</td>
<td>Harsono</td>
<td>EA</td>
<td>Total Power</td>
<td>4</td>
</tr>
<tr>
<td>08:06:47</td>
<td>09:25:54</td>
<td>2019.1.00763.L</td>
<td>NGC_4294_a_06_7M</td>
<td>VERTICO: The Virgo Environment Traced in CO</td>
<td>Brown</td>
<td>EA EU NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>08:09:31</td>
<td>09:22:35</td>
<td>2019.2.00166.S</td>
<td>Musca_e_06_TP</td>
<td>Velocity and density power spectra along the Musca filament: Hints to the origin of the star formation properties</td>
<td>Arzoumanian</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>09:24:49</td>
<td>10:36:27</td>
<td>2019.2.00166.S</td>
<td>Musca_e_06_TP</td>
<td>Velocity and density power spectra along the Musca filament: Hints to the origin of the star formation properties</td>
<td>Arzoumanian</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>09:34:04</td>
<td>10:48:46</td>
<td>2019.1.00763.L</td>
<td>NGC_4294_a_06_7M</td>
<td>VERTICO: The Virgo Environment Traced in CO</td>
<td>Brown</td>
<td>EA EU NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>10:41:23</td>
<td>12:01:27</td>
<td>2018.1.01381.S</td>
<td>iras1629_a_07_TP</td>
<td>The nature of the IRAS16293-2422 outflow and its impact on protostellar chemistry</td>
<td>Kristensen</td>
<td>EU</td>
<td>Total Power</td>
<td>7</td>
</tr>
<tr>
<td>10:48:53</td>
<td>11:34:16</td>
<td>2019.A.00003.T</td>
<td>PKS_1413_f_07_7M</td>
<td>Gravitational millilensing as a tool for studying the microarcsec-scale structure in PKS1413+135</td>
<td>Kiehlmann</td>
<td>OTHER</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>12:09:19</td>
<td>13:36:47</td>
<td>2018.1.01381.S</td>
<td>iras1629_a_07_TP</td>
<td>The nature of the IRAS16293-2422 outflow and its impact on protostellar chemistry</td>
<td>Kristensen</td>
<td>EU</td>
<td>Total Power</td>
<td>7</td>
</tr>
</tbody>
</table>
Project Title

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:45:25</td>
<td>03:19:54</td>
<td>2019.2.00094.S</td>
<td>ORS-2_a_07weets_7M</td>
<td>Are There High-mass Prestellar Cores in Orion? Wang</td>
<td>OTHER</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>03:20:01</td>
<td>04:54:53</td>
<td>2019.2.00094.S</td>
<td>ORS-2_a_07weets_7M</td>
<td>Are There High-mass Prestellar Cores in Orion?</td>
<td>OTHER</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>04:42:06</td>
<td>05:53:31</td>
<td>2019.1.01142.S</td>
<td>mosdef_2_a_06_TM1</td>
<td>A unique study of dust, metals, gas, and star formation in typical galaxies at z~2</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>04:55:00</td>
<td>06:20:41</td>
<td>2019.2.00028.S</td>
<td>NGC2449_a_06_TM1</td>
<td>A Representative Interferometric Survey of Galaxies in the z=0 Universe with Full IFU Spectroscopic Coverage: EDGE Bolatto</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>06:20:24</td>
<td>06:36:55</td>
<td>2019.1.00507.S</td>
<td>CW_Leo_a_06_TM1</td>
<td>Monitor 1.1mm line variability in IRC +10216 (IV).</td>
<td>He</td>
<td>CL</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>06:22:06</td>
<td>07:28:21</td>
<td>2019.2.00227.S</td>
<td>ESO_264--a_06_TM1</td>
<td>Starbursting GMCs in Nearby (Ultra-)Luminous Infrared Galaxies Saito</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>06:29:44</td>
<td>07:52:10</td>
<td>2019.2.00052.S</td>
<td>NGC2859_a_03_TM1</td>
<td>Systematically Measuring CO emission of Double-Barred Galaxies Wu</td>
<td>EA</td>
<td>Total Power</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>06:37:02</td>
<td>07:01:12</td>
<td>2019.1.01484.T</td>
<td>GRB_1912_d2_03_TM1</td>
<td>Gamma-ray Burst Physics with ALMA:Laskar Direct Implications for the Explosions and Progenitors</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>07:01:19</td>
<td>08:04:20</td>
<td>2019.1.00205.S</td>
<td>BR1202-0_b_03_TM1</td>
<td>Physical conditions and chemical processes of the ISM at high redshift: a line survey towards BR1202-0725 Yang</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>07:28:28</td>
<td>08:27:47</td>
<td>2019.2.00037.S</td>
<td>IC_2545_a_06_TM1</td>
<td>An ALMA CO(2-1) ACA Survey of Luminous Infrared Galaxies in GOALS Evans</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>07:52:17</td>
<td>09:08:06</td>
<td>2019.2.00134.S</td>
<td>NGC_3621_a_03_TM1</td>
<td>An ACA Survey of Dense Gas in Nearby Galaxies Usero</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>08:04:26</td>
<td>09:07:20</td>
<td>2019.1.00205.S</td>
<td>BR1202-0_b_03_TM1</td>
<td>Physical conditions and chemical processes of the ISM at high redshift: a line survey towards BR1202-0725 Yang</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>08:31:54</td>
<td>09:01:53</td>
<td>2019.2.00155.S</td>
<td>HerBS-10_b_03_TM1</td>
<td>The home stretch: Completing the redshift catalogue of a large flux-limited high-redshift Herschel sample Bakx</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>09:02:18</td>
<td>10:34:29</td>
<td>2019.1.01251.S</td>
<td>Q1228+31_a_04_TM1</td>
<td>SUPERCOLD-CGM: a high-z survey of molecular gas across the circumgalactic medium of Emonts</td>
<td>NA</td>
<td>7-m</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Galactic medium of interstellar magnetised shock.

The Infrared Dark Cloud G034.77-00.55 and the first fully resolved GMC.

ALMAGAL: ALMA Evolutionary study of High Mass Protocluster Formation in the Galaxy.

How to form massive star and cluster in subsonic-to-transonic molecular clouds?

On the universality of fibres in star forming filaments.

How to form massive star and cluster in subsonic-to-transonic molecular clouds?

Localized Feedback Processes in the Galactic CMZ.

A Quest for the Formation Mechanism of Molecular Filaments.

On the universality of fibres in star forming filaments.

Core mass function and formation mechanism of very low-mass stars.

Mapping NGC253 in dense gas tracers with ACA.

A Pilot Study of Warm Molecular Gas in Orion.

γ-ray Burst Physics with ALMA: Direct Implications for the Explosions in Double-Barred Galaxies.

Systematically Measuring CO emission of Double-Barred Galaxies.

Gamma-ray Burst Physics with ALMA: Laskar Direct Implications for the Explosions and Progenitors.

Physical conditions and chemical processes of the ISM at high redshift: a line survey towards BR1202-0725.
09:07:26 10:09:55 2019.1.00205.S BR1202-0_c_03_T11 Physical conditions and chemical processes of the ISM at high redshift: a line survey towards BR1202-0725 Yang EU 12-m 3

09:08:13 10:20:10 2019.2.00166.S Musca_c_06_TP Velocity and density power spectra along the Musca filament: Hints to the origin of the star formation properties Arzoumanian EU Total Power 6

10:10:02 11:12:26 2019.1.00205.S BR1202-0_c_03_T11 Physical conditions and chemical processes of the ISM at high redshift: a line survey towards BR1202-0725 Yang EU 12-m 3

10:20:17 11:30:37 2019.2.00166.S Musca_c_06_TP Velocity and density power spectra along the Musca filament: Hints to the origin of the star formation properties Arzoumanian EU Total Power 6

10:34:36 11:56:41 2019.1.00763.S NGC_4772_a_06_7M VERTICO: The Virgo Environment Traced in CO Brown EA EU NA 7-m 6

14:24:59 16:29:22 2019.1.01532.S Sun1_B7_a_07_INT 3D Structure of the Quiet Solar Chromosphere Bastian NA 12-m 7

16:57:35 18:27:37 2019.1.01556.S SDC13_a_03_7M On the universality of fibres in star forming filaments Williams EU 7-m 3

17:45:57 18:33:29 2019.1.01422.S J2031+12_a_03_T11 Molecular gas properties of HI 21-cm absorption-selected galaxies at 1<z<2 Dutta EU 12-m 3

18:27:46 19:57:50 2019.1.01556.S SDC13_a_03_7M On the universality of fibres in star forming filaments Williams EU 7-m 3

18:59:13 19:43:13 2019.1.01422.S J2358-10_a_03_T11 Molecular gas properties of HI 21-cm absorption-selected galaxies at 1<z<2 Dutta EU 12-m 3

19:43:19 20:28:03 2019.1.01190.S MCG-03-0_a_03_T11 Mapping the Ionizing Photon Rates from Luminous Starburst Galaxies in the local Universe Linden NA 12-m 3

20:05:29 21:02:25 2019.2.00028.S VV488NED_a_06_7M A Representative Interferometric Survey of Galaxies in the z=0 Universe with Full IFU Spectroscopic Coverage: EDGE Bolatto NA 7-m 6

20:28:08 21:18:21 2019.1.00313.S SSA.0001_a_04_T11 Needle in a haystack: Identifying the highest-redshift candidate DSFGs using 2mm imaging Casey NA 12-m 4

23:48:51 01:21:56 2019.2.00167.S L1448-C_a_04_7M Grain growth in the youngest protostellar envelopes: the pristine properties of star and planet-forming material Galametz EU 7-m 4

23:52:09 01:04:25 2019.2.00097.S 2MASS_J0_a_04_TP Probing the physical and chemical structure of dense cores: toward understanding methanol formation Harsono EA Total Power 4
Moving Past Small Number Statistics in Astrochemistry: An ACA Molecular Survey of 25 Hot Cores

Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: I-C3H+

Probing Cosmic Dawn: Estimating the Ellis Stellar Ages of z~9 Galaxies

The first minisurvey for neutral carbon Moor gas in debris disks around G-type stars to test secondary gas disk models

Unveiling the nature of an unusually large gaseous transit in a debris disk

Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: I-C3H+

A Comprehensive [CII] Survey of Herschel-Selected Starbursts at z=3-6

HCN formation in the innermost region of O-rich AGB stars

Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: I-C3H+

Capitalising on an ALMA snapshot survey of the 3,083 reddest Herschel sources

Radio Polarimetry of GRB Afterglows

An ACA Survey of Dense Gas in Nearby Galaxies

VERTICO: The Virgo Environment Traced in CO

Direct sublimation vs. gas-phase synthesis: A Comet TOO proposal

VERTICO: The Virgo Environment Traced in CO

Velocity and density power spectra along the Musca filament: Hints to the origin of the star formation properties

Comprehensive study of the physical conditions of the molecular gas in the inner 5-7 kpc of two star-forming galaxies

Direct sublimation vs. gas-phase synthesis: A Comet TOO proposal

Velocity and density power spectra along the Musca filament: Hints to the origin of the star formation properties

How to form massive star and cluster in subsonic-to-transonic molecular clouds?

Shadow chemistry in time: resolving disk surface chemistry using inner disk shadows

How to form massive star and cluster in subsonic-to-transonic molecular clouds?

How to form massive star and cluster in subsonic-to-transonic molecular clouds?
2020-01-10

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:12:16</td>
<td>01:28:33</td>
<td>2019.2.00097.S</td>
<td>2MASS_J0_a_04_7M</td>
<td>Probing the physical and chemical structure of dense cores: toward understanding methanol formation</td>
<td>Harsono</td>
<td>EA</td>
<td>7-m</td>
<td>4</td>
</tr>
<tr>
<td>00:25:56</td>
<td>01:40:36</td>
<td>2019.2.00072.S</td>
<td>N79_E_a_06_TP</td>
<td>Filament and high-mass star formation triggered by tidally-driven colliding HI flows in the LMC</td>
<td>Tsuge</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>01:08:19</td>
<td>02:18:48</td>
<td>2019.1.00271.S</td>
<td>MC5-N_a_06_TM1</td>
<td>A very low-mass prestellar core in Taurus: investigation of brown dwarf formation</td>
<td>Tokuda</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:28:41</td>
<td>02:31:38</td>
<td>2019.2.00246.S</td>
<td>ALESS_67_a_06_7M</td>
<td>The impact of accreting black holes on the molecular gas excitation in dusty star forming galaxies</td>
<td>Calistro Rivera</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
</tbody>
</table>
A joint ALMA-KMOS program to
of 3mm-selected sources

The first complete redshift distribution
understanding methanol formation
structure of dense cores: toward
Probing the physical and chemical
from Luminous Starburst Galaxies in
Mapping the Ionizing Photon Rates
tracers with ACA
Mapping NGC253 in dense gas
SPT z=4-7 protoclusters: cluster
High-Mass Star Forming Filaments
Tracing the Flow into Dense Cores in
CLJ2031-4037
Massive Merging Cluster SPT-
A Search for Shocks in the Rare
Molecular gas properties of HI 21-cm
forming filaments
On the universality of fibres in star
Fields?
Accretion Really Driven by Magnetic
Zeeman Observations: Is Disk
forming filaments
On the universality of fibres in star
forming filaments
On the universality of fibres in star
forming filaments
On the universality of fibres in star
forming filaments
On the universality of fibres in star
forming filaments
Molecular gas properties of HI 21-cm
forming filaments
On the universality of fibres in star
forming filaments
On the universality of fibres in star
forming filaments

2020-01-11
Start (UT)	End (UT)	Project Code	SchedBlock	Project Title	PI	Executive	Array	Band
00:24:21 | 01:06:06 | 2019.1.01190.S | IC_0214-a_03_TM1 | Mapping the Ionizing Photon Rates from Luminous Starburst Galaxies in the local Universe | Linden | NA | 12-m | 3
00:49:00 | 01:57:18 | 2019.2.00097.S | 2MASS_J0_a_03_7M | Probing the physical and chemical structure of dense cores: toward understanding methanol formation | Harsono | EA | 7-m | 3
01:06:13 | 01:34:57 | 2019.1.00838.S | ALMA_3mm_g_03_TM1 | The first complete redshift distribution of 3mm-selected sources | Zavala | NA | 12-m | 3
02:02:18 | 02:38:00 | 2019.1.01537.S | GS4_3456_a_04_TM1 | A joint ALMA-KMOS program to... | Curti | EU | 12-m | 4
<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:06:24</td>
<td>00:59:44</td>
<td>2019.1.00779</td>
<td>SPT0311_a_03_TM1</td>
<td>SPT z=4-7 protoclusters; cluster membership and dynamics from line observations</td>
<td>Chapman</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>00:13:07</td>
<td>01:36:46</td>
<td>2019.2.00167</td>
<td>L1448-C_a_03_7M</td>
<td>Grain growth in the youngest protostellar envelopes; the pristine properties of star and planet-forming material</td>
<td>Galametz</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>01:08:18</td>
<td>02:08:57</td>
<td>2019.1.01190</td>
<td>IRAS_054_a_03_TM1</td>
<td>Mapping the Ionizing Photon Rates from Luminous Starburst Galaxies in the local Universe</td>
<td>Linden</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>01:42:40</td>
<td>03:06:39</td>
<td>2019.2.00062</td>
<td>Mon_R2_a_04_TP</td>
<td>Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: l-C3H+</td>
<td>Lipnicky</td>
<td>NA</td>
<td>Total Power</td>
<td>4</td>
</tr>
<tr>
<td>01:52:41</td>
<td>03:03:30</td>
<td>2019.2.00062</td>
<td>Mon_R2_a_03_7M</td>
<td>Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: l-C3H+</td>
<td>Lipnicky</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>02:22:20</td>
<td>03:23:07</td>
<td>2019.1.01190</td>
<td>IRAS_054_a_03_TM1</td>
<td>Mapping the Ionizing Photon Rates from Luminous Starburst Galaxies in the local Universe</td>
<td>Linden</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>03:03:36</td>
<td>04:09:34</td>
<td>2019.2.00062</td>
<td>Mon_R2_a_03_7M</td>
<td>Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: l-C3H+</td>
<td>Lipnicky</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>03:06:46</td>
<td>04:31:21</td>
<td>2019.2.00062</td>
<td>Mon_R2_a_04_TP</td>
<td>Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: l-C3H+</td>
<td>Lipnicky</td>
<td>NA</td>
<td>Total Power</td>
<td>4</td>
</tr>
<tr>
<td>03:23:14</td>
<td>04:28:24</td>
<td>2019.1.01422</td>
<td>J0501-01_a_03_TM1</td>
<td>Molecular gas properties of HI 21-cm absorption-selected galaxies at 1<z<2</td>
<td>Dutta</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
</tbody>
</table>
Revealing Chemical Diversity and Chemical Evolution in the NGC2264-D Cluster-Forming Clump
Taniguchi
EA
7-m
3

Mapping the Ionizing Photon Rates from Luminous Starburst Galaxies in the local Universe
Linden
NA
12-m
3

Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: I-CSH+
Lipicky
NA
Total Power
4

The life of post-starburst galaxies at z~0.7: constraining the quenching mechanisms from stars and gas
Wu
EU
12-m
4

An ACA Survey of Dense Gas in Nearby Galaxies
Usero
EU
7-m
3

An ACA Survey of Dense Gas in Nearby Galaxies
Usero
EU
Total Power
3

Physical conditions and chemical processes of the ISM at high redshift: a line survey towards BR1202-0725
Yang
EU
12-m
3

An ACA Survey of Dense Gas in Nearby Galaxies
Usero
EU
Total Power
3

An ACA Survey of Dense Gas in Nearby Galaxies
Usero
EU
Total Power
3

Physical conditions and chemical processes of the ISM at high redshift: a line survey towards BR1202-0725
Yang
EU
12-m
3

SUPERCOLD-CGM: a high-z survey of molecular gas across the circum-galactic medium of Enormous Lya Nebulae
Emonts
NA
7-m
4

An ACA Survey of Dense Gas in Nearby Galaxies
Usero
EU
Total Power
3

Which way does it go? Molecular gas Young in multi-spin stellar counterrotator galaxies
NA
12-m
3

Which way does it go? Molecular gas Young in multi-spin stellar counterrotator galaxies
NA
12-m
3

An ACA Survey of Dense Gas in Nearby Galaxies
Usero
EU
Total Power
3

Quasar Feedback Survey: The impact Calistro Rivera of jets and outflows on the molecular ISM of quasar host galaxies
EU
7-m
3

Tracing Molecular Gas Across the Stages of Accretion onto a Galaxy Cluster at z=1.487
Alberts
NA
12-m
3

The home stretch: Completing the redshift catalogue of a large flux-limited high-redshift Herschel sample
Bakx
EA
7-m
3

Systematically Measuring CO emission of Double-Barred Galaxies
Wu
EU
Total Power
3

Spectral line survey in the rest-frame 350 GHz band toward a lensed sub-mm galaxy at z=2.3
Nishimura
EA
12-m
3

Mapping NGC253 in dense gas tracers with ACA
Beşli
EU
7-m
3

Mapping NGC253 in dense gas tracers with ACA
Beşli
EU
7-m
3

Mapping NGC253 in dense gas tracers with ACA
Beşli
EU
7-m
3

Mapping the Ionizing Photon Rates from Luminous Starburst Galaxies in the local Universe
Linden
NA
12-m
3

The first complete redshift distribution Zavala of 3mm-selected sources
NA
12-m
3

SPT z~4.7 protoclusters: cluster membership and dynamics from
Chapman
NA
12-m
3
2020-01-13

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:06:30</td>
<td>01:30:09</td>
<td>2019.2.00062.S</td>
<td>Mon_R2_a_04_TP</td>
<td>Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: H2 and its Enrichment</td>
<td>Lipnicky</td>
<td>NA</td>
<td>Total Power</td>
<td>4</td>
</tr>
<tr>
<td>00:29:16</td>
<td>02:02:27</td>
<td>2019.2.00167.S</td>
<td>L1448-C_a_04_7M</td>
<td>Grain growth in the youngest protostellar envelopes: the pristine properties of star and planet-forming material</td>
<td>Galametz</td>
<td>EU</td>
<td>7-m</td>
<td>4</td>
</tr>
<tr>
<td>01:15:39</td>
<td>02:11:45</td>
<td>2019.1.00779.S</td>
<td>SPT0348_a_03_TM1</td>
<td>SPT z=4-7 protoclusters: cluster membership and dynamics from line observations</td>
<td>Chapman</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>02:11:55</td>
<td>03:20:21</td>
<td>2019.1.00909.S</td>
<td>XID_276_d_03_TM1</td>
<td>ALMA spectroscopic follow-up of high-z low-luminosity AGN candidates in the CDF-S</td>
<td>Vito</td>
<td>CL</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>02:15:40</td>
<td>03:42:42</td>
<td>2019.1.01132.S</td>
<td>NGC1482_b_03_7M</td>
<td>Molecular gas in the starburst-driven superwind of NGC 1482</td>
<td>Salak</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>03:20:04</td>
<td>04:40:50</td>
<td>2019.2.00062.S</td>
<td>Horsekne_a_06_TP</td>
<td>Unlocking the Potential of the Most Definitive Molecular Tracer of UV-Enhancement: H2 and its Enrichment</td>
<td>Lipnicky</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>03:30:16</td>
<td>04:14:26</td>
<td>2019.1.00909.S</td>
<td>XID_276_b_03_TM1</td>
<td>ALMA spectroscopic follow-up of high-z low-luminosity AGN candidates in the CDF-S</td>
<td>Vito</td>
<td>CL</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>03:42:49</td>
<td>04:57:29</td>
<td>2019.2.00030.S</td>
<td>n5_clump_a_03_7M</td>
<td>Revealing Chemical Diversity and Chemical Evolution in the NGC2264-D Cluster-Forming Clump</td>
<td>Taniguchi</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>04:14:42</td>
<td>05:08:37</td>
<td>2019.1.00702.S</td>
<td>LEGA-C_2_a_04_TP</td>
<td>The life of post-starburst galaxies at z~0.7: constraining the quenching mechanisms from stars and gas</td>
<td>Wu</td>
<td>EU</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>04:40:59</td>
<td>06:03:36</td>
<td>2019.2.00052.S</td>
<td>NGC2859_a_03_TP</td>
<td>Systematically Measuring CO emission of Double-Barred Galaxies</td>
<td>Wu</td>
<td>EA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>04:57:36</td>
<td>06:31:33</td>
<td>2019.2.00134.S</td>
<td>NGC_2997_a_03_7M</td>
<td>An ACA Survey of Dense Gas in Nearby Galaxies</td>
<td>Usero</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>05:08:57</td>
<td>06:16:08</td>
<td>2019.1.01615.S</td>
<td>COSMOS-1_a_03_TM1</td>
<td>Resolving the molecular and atomic gas content of galaxies beyond the local Universe</td>
<td>Hess</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>06:03:43</td>
<td>07:19:12</td>
<td>2019.2.00134.S</td>
<td>NGC_3621_a_03_TP</td>
<td>An ACA Survey of Dense Gas in Nearby Galaxies</td>
<td>Usero</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>06:16:14</td>
<td>07:23:38</td>
<td>2019.1.01615.S</td>
<td>COSMOS-1-a_03_TM1</td>
<td>Resolving the molecular and atomic gas content of galaxies beyond the local Universe</td>
<td>Hess</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>06:31:38</td>
<td>08:05:13</td>
<td>2019.2.00134.S</td>
<td>NGC_2997_a_03_7M</td>
<td>An ACA Survey of Dense Gas in Nearby Galaxies</td>
<td>Usero</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>07:19:21</td>
<td>08:34:45</td>
<td>2019.2.00134.S</td>
<td>NGC_3621_a_03_TP</td>
<td>An ACA Survey of Dense Gas in Nearby Galaxies</td>
<td>Usero</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>07:32:44</td>
<td>08:40:11</td>
<td>2019.1.01615.S</td>
<td>COSMOS-1-a_03_TM1</td>
<td>Resolving the molecular and atomic gas content of galaxies beyond the local Universe</td>
<td>Hess</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>08:05:20</td>
<td>09:39:13</td>
<td>2019.2.00134.S</td>
<td>NGC_2997_a_03_7M</td>
<td>An ACA Survey of Dense Gas in Nearby Galaxies</td>
<td>Usero</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>08:35:17</td>
<td>10:00:55</td>
<td>2019.2.00134.S</td>
<td>NGC_4536_a_03_TP</td>
<td>An ACA Survey of Dense Gas in Nearby Galaxies</td>
<td>Usero</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>08:40:24</td>
<td>09:34:27</td>
<td>2019.1.01124.S</td>
<td>ngec4550_a_03_TM1</td>
<td>Which way does it go? Molecular gas Young in multi-spin stellar counterrotator galaxies</td>
<td>Na</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>09:34:43</td>
<td>10:38:20</td>
<td>2019.1.01178.S</td>
<td>8950-127_a_03_TM1</td>
<td>Why star formation is suppressed in green valley galaxies?</td>
<td>Lin</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>10:01:01</td>
<td>11:15:34</td>
<td>2019.2.00166.S</td>
<td>Musca_b_03_TP</td>
<td>Velocity and density power spectra along the Musca filament: Hints to the origin of the star formation properties</td>
<td>Arzoumanian</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>Time</td>
<td>Date</td>
<td>ID</td>
<td>Title</td>
<td>Author</td>
<td>Access</td>
<td>Instrument Size</td>
<td>Session</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td>--------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>11:08:56</td>
<td>2019.2.00093.S</td>
<td>G320.23-c_03_7M</td>
<td>Newly discovered hot core precursors: early warm-up phase and diversity</td>
<td>Csengeri</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>