2016-08-01

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:26:46</td>
<td>12:38:58</td>
<td>2015.1.00543.S</td>
<td>GOODS-S_e_06_TE</td>
<td>Towards a census of star-formation since z~6 with ALMA-1.1mm</td>
<td>Elbaz</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>09:33:49</td>
<td>10:45:39</td>
<td>2015.1.00543.S</td>
<td>GOODS-S_e_06_TE</td>
<td>Towards a census of star-formation since z~6 with ALMA-1.1mm</td>
<td>Elbaz</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>08:03:39</td>
<td>09:33:04</td>
<td>2015.1.00664.S</td>
<td>KMOS3DU4_b_06_TE</td>
<td>Physical mechanisms of bulge formation in galaxies at z~2</td>
<td>Tadaki</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>07:12:48</td>
<td>07:46:15</td>
<td>2015.1.00196.S</td>
<td>SMC0N69_b_03_TP</td>
<td>Zooming in on the parsec-scale structure of CO gas at low metallicity and its relation to star formation</td>
<td>Roman-Duval</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>06:38:33</td>
<td>07:12:07</td>
<td>2015.1.00196.S</td>
<td>SMC1N42_b_03_TP</td>
<td>Zooming in on the parsec-scale structure of CO gas at low metallicity and its relation to star formation</td>
<td>Roman-Duval</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>05:56:44</td>
<td>06:37:47</td>
<td>2015.1.01363.S</td>
<td>MC23_a_03_TP</td>
<td>Large scale infall or local collapse forms massive clusters?</td>
<td>Csengeri</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>05:01:50</td>
<td>05:39:53</td>
<td>2015.1.00956.S</td>
<td>NGC_6744_a_06_TP</td>
<td>How Does Cloud-Scale Physics Drive Galaxy Evolution?</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>03:25:35</td>
<td>04:54:34</td>
<td>2015.1.01058.S</td>
<td>CrA-1_a_06_TE</td>
<td>Corona Australis Disk Zoo</td>
<td>Liu</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:51:16</td>
<td>03:18:57</td>
<td>2015.1.00667.S</td>
<td>AG22.26+c_06_TP</td>
<td>Mass assembly in the pre-stellar phase of high-mass star formation</td>
<td>Wang</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>02:22:39</td>
<td>02:50:20</td>
<td>2015.1.00667.S</td>
<td>AG22.36+c_06_TP</td>
<td>Mass assembly in the pre-stellar phase of high-mass star formation</td>
<td>Wang</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>01:54:27</td>
<td>02:22:12</td>
<td>2015.1.00667.S</td>
<td>AG22.36+c_06_TP</td>
<td>Mass assembly in the pre-stellar phase of high-mass star formation</td>
<td>Wang</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>01:45:29</td>
<td>03:17:24</td>
<td>2015.1.00578.S</td>
<td>IRAS_165_a_06_TE</td>
<td>Probing the role of magnetic fields in the formation of a massive protobinary</td>
<td>Zhang</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:25:13</td>
<td>01:53:03</td>
<td>2015.1.00667.S</td>
<td>AG22.36+c_06_TP</td>
<td>Mass assembly in the pre-stellar phase of high-mass star formation</td>
<td>Wang</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>00:54:54</td>
<td>01:23:11</td>
<td>2015.1.00667.S</td>
<td>AG22.36+c_06_TP</td>
<td>Mass assembly in the pre-stellar phase of high-mass star formation</td>
<td>Wang</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>00:07:37</td>
<td>00:53:21</td>
<td>2015.1.01014.S</td>
<td>SDC326_4_a_03_TP</td>
<td>What can hubs tell us on massive star Peretto formation?</td>
<td>EA</td>
<td>Total Power</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

2016-07-31

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>23:50:29</td>
<td>01:45:09</td>
<td>2015.1.00578.S</td>
<td>IRAS_165_a_06_TE</td>
<td>Probing the role of magnetic fields in the formation of a massive protobinary</td>
<td>Zhang</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>Time</td>
<td>Duration</td>
<td>Code</td>
<td>Title</td>
<td>Author(s)</td>
<td>Code</td>
<td>Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>--------------</td>
<td>--</td>
<td>-----------------</td>
<td>------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21:35:21</td>
<td>22:00:46</td>
<td>2015.1.00167.S Arp220_c_04_TE</td>
<td>Spatially resolved wideband spectroscopy in ULIRG obscured nuclei II</td>
<td>Martin</td>
<td>NA</td>
<td>12-m 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21:08:24</td>
<td>21:34:05</td>
<td>2015.1.00167.S Arp220_b_04_TE</td>
<td>Spatially resolved wideband spectroscopy in ULIRG obscured nuclei II</td>
<td>Martin</td>
<td>EU</td>
<td>12-m 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:40:18</td>
<td>20:44:34</td>
<td>2015.1.01590.S Gal1_a_03_TE</td>
<td>Constraining the molecular gas content of normal star-forming galaxies at 3<z<3.5</td>
<td>Cassata</td>
<td>CL</td>
<td>12-m 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:37:57</td>
<td>18:54:47</td>
<td>2015.1.01590.S Gal3_a_03_TE</td>
<td>Constraining the molecular gas content of normal star-forming galaxies at 3<z<3.5</td>
<td>Cassata</td>
<td>CL</td>
<td>12-m 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:15:54</td>
<td>18:36:15</td>
<td>2015.1.00926.S NGC4472_a_03_TE</td>
<td>Direct Emission from Advection Dominated Accretion Flows in the Local Universe</td>
<td>Hogan</td>
<td>EU</td>
<td>12-m 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:19:52</td>
<td>18:15:28</td>
<td>2015.1.01569.S He_2-10_a_03_TE</td>
<td>CO vs. Cl in Henize 2-10</td>
<td>Imara</td>
<td>NA</td>
<td>12-m 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:48:41</td>
<td>17:34:07</td>
<td>2015.1.00196.S LMC1N127_a_03_TP</td>
<td>Zooming in on the parsec-scale structure of CO gas at low metallicity and its relation to star formation</td>
<td>Roman-Duval</td>
<td>NA</td>
<td>Total Power 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:01:18</td>
<td>12:05:44</td>
<td>2015.1.01136.S Abell383_a_06_TE</td>
<td>Detecting [Cl]emission from a strongly lensed galaxy at the end of the reionization epoch.</td>
<td>Gonzalez López</td>
<td>CL</td>
<td>12-m 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:40:13</td>
<td>10:21:04</td>
<td>2015.1.00258.S NGC300_b_03_newOFF_TP</td>
<td>The failure of galactic star formation relations on sub-galactic scales: A direct probe of the physics of star formation</td>
<td>Schruba</td>
<td>EU</td>
<td>Total Power 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:58:51</td>
<td>09:39:58</td>
<td>2015.1.00258.S NGC300_b_03_newOFF_TP</td>
<td>The failure of galactic star formation relations on sub-galactic scales: A direct probe of the physics of star formation</td>
<td>Schruba</td>
<td>EU</td>
<td>Total Power 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:43:11</td>
<td>09:25:24</td>
<td>2015.1.00187.S NGC0665_a_06_TE</td>
<td>Gas in the most MASSIVE Galaxies</td>
<td>Davis</td>
<td>EU</td>
<td>12-m 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:17:26</td>
<td>08:58:32</td>
<td>2015.1.00258.S NGC300_b_03_newOFF_TP</td>
<td>The failure of galactic star formation relations on sub-galactic scales: A direct probe of the physics of star formation</td>
<td>Schruba</td>
<td>EU</td>
<td>Total Power 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:35:57</td>
<td>08:17:08</td>
<td>2015.1.00258.S NGC300_b_03_newOFF_TP</td>
<td>The failure of galactic star formation relations on sub-galactic scales: A direct probe of the physics of star formation</td>
<td>Schruba</td>
<td>EU</td>
<td>Total Power 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:01:27</td>
<td>08:14:33</td>
<td>2015.1.00732.S NGC_253_a_03_TE</td>
<td>Illuminate NGC 253 Nuclear Starburst Nakanishi by Ionized Gas Imaging in Parsec Scale with ALMA</td>
<td>Nakanishi</td>
<td>NA</td>
<td>12-m 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:54:31</td>
<td>07:35:44</td>
<td>2015.1.00258.S NGC300_b_03_newOFF_TP</td>
<td>The failure of galactic star formation relations on sub-galactic scales: A direct probe of the physics of star formation</td>
<td>Schruba</td>
<td>EU</td>
<td>Total Power 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>----</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>05:43:20</td>
<td>07:00:35</td>
<td>2015.1.00212.S</td>
<td>mADF22_a_03_TE</td>
<td>Dense Molecular Gas Mapping of the Node in the Cosmic Web at z=3.1</td>
<td>Umehata</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>05:13:11</td>
<td>06:33:15</td>
<td>2015.1.00749.S</td>
<td>G028.314_a_03_7M</td>
<td>Properties of the most distant star-forming GMC in the Milky Way</td>
<td>Mottram</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>04:44:25</td>
<td>05:34:49</td>
<td>2015.1.01571.S</td>
<td>G49.49-0_a_06_TE</td>
<td>Statistical nature of the class I CH3OH maser clumps in high mass star-formation</td>
<td>Kim</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>04:13:37</td>
<td>04:42:58</td>
<td>2015.1.00671.S</td>
<td>V4046_Sg_b_06_TE</td>
<td>The Shape of Disk Irradiation: Imaging Molecular Dissociation Products in Nearby, Evolved Protoplanetary Disks</td>
<td>Kastner</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>03:45:33</td>
<td>05:12:47</td>
<td>2015.1.00023.S</td>
<td>HD_16329_a_06_7M</td>
<td>Understanding the Disk Wind from HDKlaassen 163296</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03:00:46</td>
<td>03:50:16</td>
<td>2015.1.01439.S</td>
<td>ngc6240_a_04_TE</td>
<td>UNVEILING MERGER-INDUCED SHOCKS IN MOLECULAR HYDROGEN EMITTING GALAXIES (MOHENGs)</td>
<td>Saito</td>
<td>EU</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>02:19:23</td>
<td>02:58:35</td>
<td>2015.1.01439.S</td>
<td>IRAS_F16_b_04_TE</td>
<td>UNVEILING MERGER-INDUCED SHOCKS IN MOLECULAR HYDROGEN EMITTING GALAXIES (MOHENGs)</td>
<td>Saito</td>
<td>EU</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>02:10:24</td>
<td>02:39:16</td>
<td>2015.1.00749.S</td>
<td>G028.314_a_03_7M</td>
<td>Properties of the most distant star-forming GMC in the Milky Way</td>
<td>Mottram</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>01:32:30</td>
<td>01:50:50</td>
<td>2015.1.00926.S</td>
<td>NGC7049_a_03_TE</td>
<td>Direct Emission from Advection Dominated Accretion Flows in the Local Universe</td>
<td>Hogan</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>01:12:12</td>
<td>01:30:20</td>
<td>2015.1.00926.S</td>
<td>NGC6868_a_03_TE</td>
<td>Direct Emission from Advection Dominated Accretion Flows in the Local Universe</td>
<td>Hogan</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>00:51:28</td>
<td>01:11:31</td>
<td>2015.1.00926.S</td>
<td>NGC5813_a_03_TE</td>
<td>Direct Emission from Advection Dominated Accretion Flows in the Local Universe</td>
<td>Hogan</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>00:49:48</td>
<td>02:10:03</td>
<td>2015.1.00749.S</td>
<td>G028.314_a_03_7M</td>
<td>Properties of the most distant star-forming GMC in the Milky Way</td>
<td>Mottram</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
</tbody>
</table>

2016-07-30

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:02:38</td>
<td>17:42:23</td>
<td>2015.1.01590.S</td>
<td>Gal4_a_03_TE</td>
<td>Constraining the molecular gas content of normal star-forming galaxies at 3<z<3.5</td>
<td>Cassata</td>
<td>CL</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>17:01:59</td>
<td>17:47:11</td>
<td>2015.1.00357.S</td>
<td>G286_5_a_06_TP</td>
<td>Kinematics of Massive Star Cluster in Formation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:12:34</td>
<td>15:21:17</td>
<td>2015.1.00089.S</td>
<td>sigOri_7_a_06_TE</td>
<td>Anatomy of a midlife crisis: can sigma Orionis disks still make Jupiters?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:29:00</td>
<td>12:09:54</td>
<td>2015.1.00258.S</td>
<td>NGC300_b_03_newOFF_TP</td>
<td>The failure of galactic star formation relations on sub-galactic scales: A direct probe of the physics of star formation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:47:30</td>
<td>11:28:17</td>
<td>2015.1.00258.S</td>
<td>NGC300_b_03_newOFF_TP</td>
<td>The failure of galactic star formation relations on sub-galactic scales: A direct probe of the physics of star formation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:06:18</td>
<td>10:47:11</td>
<td>2015.1.00258.S</td>
<td>NGC300_b_03_newOFF_TP</td>
<td>The failure of galactic star formation relations on sub-galactic scales: A direct probe of the physics of star formation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:20:36</td>
<td>10:01:28</td>
<td>2015.1.00258.S</td>
<td>NGC300_b_03_newOFF_TP</td>
<td>The failure of galactic star formation relations on sub-galactic scales: A direct probe of the physics of star formation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:39:07</td>
<td>09:20:09</td>
<td>2015.1.00258.S</td>
<td>NGC300_b_03_newOFF_TP</td>
<td>The failure of galactic star formation relations on sub-galactic scales: A direct probe of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Detecting [CII] emission from a strongly lensed galaxy at the end of the reionization epoch.

González López CL 12-m 6

The failure of galactic star formation relations on sub-galactic scales: A direct probe of the physics of star formation

Schruba EU Total Power 3

AGN Feedback and its Role in Galaxy Prandoni Evolution: gas and stellar kinematics of radio-loud early-type galaxies

EU 12-m 6

The failure of galactic star formation relations on sub-galactic scales: A direct probe of the physics of star formation

Schruba EU Total Power 3

Measuring the Spectral Evolution, Structure, and Speed of Extragalactic Jets with ALMA

Meyer NA 12-m 6

The mass loss history of the "fresh" carbon star TX Piscium - A showcase for stellar evolution

Bruner EU 7-m 6

Unveiling the properties of a galaxy at the frontiers of the Universe

Laporte CL 12-m 7

Mass assembly in the pre-stellar phase of high-mass star formation

Wang EU 7-m 6

Unveiling the properties of a galaxy at the frontiers of the Universe

Laporte CL 12-m 7

Mapping the D/H ratio of Complex Organic Molecules in IRAS16293-2422 to probe its dynamics and chemistry

Caux EU 12-m 7

Fragmentation of massive dense clumps: unveiling the initial conditions of high-mass star formation

Fontani EU 12-m 7

A survey of prestellar, high-mass cluster-forming clumps: constraining models of high-mass star formation

Sanhueza EA 7-m 6

Mapping the Morphology, Kinematics, Rangwala and Excitation of Molecular Gas in Arp 220

NA 12-m 8

The nature of the massive outflow in Centaurus A

Israel EU 7-m 8

The nature of the massive outflow in Centaurus A

Israel EU 12-m 8

(Sub-)mm Continuum Emission and Gas Fueling in the Rare, Type-Transitioning Seyfert Mrk 590

Koay EU 12-m 9

Detailed molecular gas distribution of an active star forming region within a low-metallicity environment: CI observations of N83 in the Small Magellanic Cloud(SMC)

Onishi EA 7-m 8

A Close Look into the Blast Furnace: the Core of the NGC253 Starburst at One Parsec Resolution

Bolatto NA Total Power 7

Particle Acceleration in GRB Afterglows

Schulze CL 12-m 3

A Close Look into the Blast Furnace: the Core of the NGC253 Starburst at One Parsec Resolution

Bolatto NA Total Power 7

Particle Acceleration in GRB Afterglows

Schulze CL 12-m 7

Search for CO-Dark Mass within the Milky Way's Circumnuclear Region

Tanaka EA 12-m 8

Witnessing the birth of a planetary nebula

Gomez EU 12-m 7
10:33:43 2015.1.01056.S NGC_4402_a_07_7M ALMA Mapping of a Great Case of Ongoing Ram Pressure Stripping in the Nearby Virgo Cluster Kenney NA 7-m 7
22:02:03 2015.1.00777.S IRAS_151_a_07_TE Witnessing the birth of a planetary nebula Gomez EU 12-m 7
19:14:06 2015.1.00872.S SDSS_J12_a_06_TE Is the central sub-kiloparsec gas surface-density the decisive parameter for fueling supermassive black holes? Schulze EA 12-m 6
18:21:55 2015.1.00026.S NIFS-HiZ_b_06_TE A resolved view to the dust content in star-forming Halpha galaxies at z = 1.47-2.23 Ibar CL 12-m 6
15:31:00 2015.1.01455.S SDP17b_a_06_TE The origin of H2O emission and molecular outflows in IR-luminous galaxies van der Werf EU 12-m 6
14:15:31 2015.1.00942.S SPT0441-_a_08_TE Shut It Down: Probing Molecular Feedback in z~4.5 Dusty, Star-forming Galaxies Spilker NA 12-m 8
11:52:52 2015.1.00026.S SHiZELS-_a_07_TE A resolved view to the dust content in Ibar star-forming Halpha galaxies at z = 1.47-2.23 CL 12-m 7
10:25:01 2015.1.01528.S UDS.0001_a_07_TE AS2UDS : Clustering of ~1000 ALMA-Smail identified submillimeter galaxies NA Total Power 7
09:01:36 2015.1.00274.S NGC253_a_07_TP A Close Look into the Blast Furnace: Bolatto the Core of the NGC253 Starburst at One Parsec Resolution NA Total Power 7
08:03:15 2015.1.01528.S UDS.0001_a_07_TE AS2UDS : Clustering of ~1000 ALMA-Smail identified submillimeter galaxies EU 12-m 7
07:44:09 2015.1.00274.S NGC253_a_07_TP A Close Look into the Blast Furnace: Bolatto the Core of the NGC253 Starburst at One Parsec Resolution NA Total Power 7
06:53:10 2015.1.01469.S PSS_0121_a_07_TE Final Piece of the Puzzle; What Wu drives the Enhanced X-ray Emission from the Most Powerful Jets in the Early Universe NA 12-m 7
06:26:55 2015.1.00932.S 3C_9_a_06_TE Measuring the Spectral Evolution, Structure, and Speed of Extragalactic Jets with ALMA Meyer NA 12-m 6
06:17:14 2015.1.00059.S TX_Psc_a_06_7M The mass loss history of the "fresh" carbon star TX Piscium - A showcase for stellar evolution Brunner EU 7-m 6
05:42:23 2015.1.01254.S XRF_0209_a_06_TE Unification of Gamma-Ray Burst; Urata Host Galaxy of the First Off-Axis X-ray Flash 020903 EA 12-m 6
05:17:07 2015.1.00932.S 4C_08.64_a_06_TE Measuring the Spectral Evolution, Structure, and Speed of Extragalactic Jets with ALMA Meyer NA 12-m 6
04:44:04 2015.1.00932.S PKS_2101_a_06_TE Measuring the Spectral Evolution, Structure, and Speed of Extragalactic Jets with ALMA Meyer NA 12-m 6
04:15:58 2015.1.00370.S NGC_6240_b_06_TE The Most Detailed View of the Double Treister Nucleus in NGC6240 CL 12-m 6
03:06:40 2015.1.00075.S PKS1830_-_a_07_TE Monitoring PKS1830-211: the submm Muller activity of the blazar and the variability of the foreground absorption lines EU 12-m 7
02:33:57 2015.1.00667.S AG22.36+_b_06_7M Mass assembly in the pre-stellar phase of high-mass star formation Wang EU 7-m 6
2015-07-26

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:51:25</td>
<td>11:09:36</td>
<td>UDS.0018_a_07_TE</td>
<td>AS2UDS : Clustering of ~1000 ALMA-Small identified submillimeter galaxies</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:18:29</td>
<td>10:33:26</td>
<td>NGC_1087_a_06_7M</td>
<td>Promoting Diversity: ISM Physics and Blanc Star Formation across Different Environments</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:23:50</td>
<td>09:50:52</td>
<td>UDS.0016_a_07_TE</td>
<td>AS2UDS : Clustering of ~1000 ALMA-Small identified submillimeter galaxies</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:57:25</td>
<td>09:17:02</td>
<td>MagBridg_b_06_7M</td>
<td>Physical Properties and Submillimeter Rubio excess in low metallicity clouds in the Magellanic Bridge</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:42:31</td>
<td>08:13:55</td>
<td>SDSS_J00_a_07_TE</td>
<td>Final Piece of the Puzzle: What Drives the Enhanced X-ray Emission from the Most Powerful Jets in the Early Universe</td>
<td>NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:33:27</td>
<td>07:55:42</td>
<td>NGC346-r_a_03_7M</td>
<td>Collisional star-formation in the SMC: Muller NGC346</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:51:22</td>
<td>05:32:11</td>
<td>G5.89_a_07_TE</td>
<td>Revealing a new population of UC-HII Baez Rubio regions with maser RRLs</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:07:58</td>
<td>04:43:57</td>
<td>G34.3+0.a_07_TE</td>
<td>Revealing a new population of UC-HII Baez Rubio regions with maser RRLs</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:00:45</td>
<td>05:29:33</td>
<td>AG22.36+_b_06_7M</td>
<td>Mass assembly in the pre-stellar phase of high-mass star formation</td>
<td>Wang</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>02:43:38</td>
<td>04:06:59</td>
<td>G35.20-0.a_07_TE</td>
<td>Dissecting disks around young B-type Sanchez-Monge stars</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01:46:27</td>
<td>03:05:44</td>
<td>NGC_6744_a_06_7M</td>
<td>How Does Cloud-Scale Physics Drive Leroy Galaxy Evolution?</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:27:45</td>
<td>01:44:15</td>
<td>mosaic2_a_03_7M</td>
<td>G351.77--0.51: ridge formation caughtLeurini in the act</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2016-07-26

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>22:16:51</td>
<td>23:59:16</td>
<td>NGC_4402_a_07_7M</td>
<td>ALMA Mapping of a Great Case of Ongoing Ram Pressure Stripping in the Nearby Virgo Cluster</td>
<td>Kenney</td>
<td>NA</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>20:19:22</td>
<td>20:35:10</td>
<td>PG_1126-a_06_7M</td>
<td>Is the central sub-kiloparsec gas surface-density the decisive parameter for fueling supermassive black holes?</td>
<td>Schulze</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>20:05:39</td>
<td>21:38:10</td>
<td>NGC_4402_a_07_7M</td>
<td>ALMA Mapping of a Great Case of Ongoing Ram Pressure Stripping in the Nearby Virgo Cluster</td>
<td>Kenney</td>
<td>NA</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>19:00:46</td>
<td>20:17:57</td>
<td>Io_a_06_TE</td>
<td>Diurnal Variations in Molecular Species on Io</td>
<td>Rojo</td>
<td>CL</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>19:00:35</td>
<td>20:05:22</td>
<td>NGC_4402_a_07_7M</td>
<td>ALMA Mapping of a Great Case of Ongoing Ram Pressure Stripping in the Nearby Virgo Cluster</td>
<td>Kenney</td>
<td>NA</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>12:38:13</td>
<td>14:03:11</td>
<td>I1489irs_a_07_TE</td>
<td>Physical Properties of Possible "Hot" Ohashi Rings around Protostars</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:06:34</td>
<td>12:29:34</td>
<td>SHiZELS-a_07_TE</td>
<td>A resolved view to the dust content in Ibar star-forming Halpha galaxies at z = 1.47-2.23</td>
<td>CL</td>
<td>12-m</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:55:56</td>
<td>11:55:03</td>
<td>N83C_a_08_7M</td>
<td>Detailed molecular gas distribution of Onishi an active star forming region within a low-metallicity environment: Cl observations of N83 in the Small Magellanic Cloud(SMC)</td>
<td>Onishi</td>
<td>NA</td>
<td>7-m</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>09:31:43</td>
<td>10:35:47</td>
<td>NGC_253_a_03_TE</td>
<td>Illuminate NGC 253 Nuclear Starburst Nakanishi by Ionized Gas Imaging in Parsec Scale with ALMA</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:39:47</td>
<td>09:18:08</td>
<td>MRC0156-a_03_7M</td>
<td>Cold gas halos at z=2: evolution of massive galaxies within a molecular IGM</td>
<td>EMonts</td>
<td>7-m</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:37:55</td>
<td>08:39:50</td>
<td>mADF22_a_03_TE</td>
<td>Dense Molecular Gas Mapping of the Umehata Node in the Cosmic Web at</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Why do isolated galaxies host red pseudobulges? Verdes-Montenegro EU 12-m 3
Why do isolated galaxies host red pseudobulges? Verdes-Montenegro EU 12-m 3
How Does Cloud-Scale Physics Drive Galaxy Evolution? Leroy NA 7-m 6
How Does Cloud-Scale Physics Drive Galaxy Evolution? Leroy NA 7-m 6
Tracing the physical conditions of a jet-driven molecular outflow Morganti EU 12-m 3
Properties of the most distant star-forming GMC in the Milky Way Mottram EU 7-m 6
Dissecting disks around young B-type stars Sanchez-Monge EA 7-m 6
A survey of prestellar, high-mass cluster-forming clumps: constraining models of high-mass star formation Sanhueza EA 7-m 6
Revealing a new population of UC-HII regions with maser RRLs Baez Rubio EU 12-m 7
What is the origin of spiral arms in the Christiaens disk of HD 142527? CL 12-m 6
Testing a Chemical Model to Probe Supermassive Black Hole Accretion Liu EA 7-m 6
The earliest stages of molecular outflow activity from the young protostar Lupus 3 MMS Plunkett NA 12-m 3
How Does Cloud-Scale Physics Drive Galaxy Evolution? Leroy NA 7-m 6
Disk/Envelope of the Burst Source EX Saito Lup EA 12-m 6