<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:52:57</td>
<td>12:23:32</td>
<td>2017.1.00886.L</td>
<td>NGC1546_a_06_TP</td>
<td>100,000 Molecular Clouds Across the Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Schinnerer</td>
<td>EU NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>11:24:27</td>
<td>12:23:31</td>
<td>2017.1.00461.S</td>
<td>GMC-8_a_06_7M</td>
<td>Revealing the roles of filamentary clouds in GMC evolution of M33</td>
<td>Muraoka</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>10:37:19</td>
<td>11:46:48</td>
<td>2017.1.01027.S</td>
<td>U4-190_b_07_TM1</td>
<td>Structural evolution and quenching in massive galaxies at z=2</td>
<td>Tadaki</td>
<td>EU</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>10:26:32</td>
<td>11:42:57</td>
<td>2017.1.00886.L</td>
<td>NGC1097_a_06_TP</td>
<td>100,000 Molecular Clouds Across the Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Schinnerer</td>
<td>EU NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>09:43:29</td>
<td>11:14:40</td>
<td>2017.1.00931.S</td>
<td>SWBar_Fi_a_06_7M</td>
<td>From Beginning to End -- Star Formation and Molecular Cloud Evolution in the Small Magellanic Cloud</td>
<td>Johnson</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>09:10:08</td>
<td>10:26:24</td>
<td>2017.1.00886.L</td>
<td>NGC1097_a_06_TP</td>
<td>100,000 Molecular Clouds Across the Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Schinnerer</td>
<td>EU NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>08:11:46</td>
<td>09:43:21</td>
<td>2017.1.00931.S</td>
<td>SWBar_Fi_a_06_7M</td>
<td>From Beginning to End -- Star Formation and Molecular Cloud Evolution in the Small Magellanic Cloud</td>
<td>Johnson</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>07:43:39</td>
<td>08:24:27</td>
<td>2017.1.01093.S</td>
<td>8616-190_a_03_TM1</td>
<td>The role of molecular gas in quenching star formation of green valley galaxies</td>
<td>Lin</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>07:30:07</td>
<td>08:08:39</td>
<td>2017.1.00716.S</td>
<td>G28.531_a_06_TP</td>
<td>A survey of prestellar, high-mass clump candidates: constraining models of high-mass star formation</td>
<td>Sanhueza</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>07:02:36</td>
<td>07:43:32</td>
<td>2017.1.01093.S</td>
<td>8616-190_a_03_TM1</td>
<td>The role of molecular gas in quenching star formation of green valley galaxies</td>
<td>Lin</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>06:37:19</td>
<td>07:02:29</td>
<td>2017.1.01093.S</td>
<td>7815-127_a_03_TM1</td>
<td>The role of molecular gas in quenching star formation of green valley galaxies</td>
<td>Lin</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>06:33:07</td>
<td>08:10:03</td>
<td>2016.1.01372.S</td>
<td>g34mm12_a_03_7M</td>
<td>Gravity vs B-field in massive-star forming clouds: Who is in the driving seat?</td>
<td>Koch</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>05:44:05</td>
<td>06:37:11</td>
<td>2017.1.01406.S</td>
<td>RX_J1713_c_03_TM1</td>
<td>A Quest for Cosmic Ray Acceleration Site: Unveiling the Shock-Cloud Interaction toward the Young SNR RX J1713.7-3946</td>
<td>Sano</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>04:50:05</td>
<td>05:43:23</td>
<td>2017.1.01406.S</td>
<td>RX_J1713_c_03_TM1</td>
<td>A Quest for Cosmic Ray Acceleration Site: Unveiling the Shock-Cloud Interaction toward the Young SNR RX J1713.7-3946</td>
<td>Sano</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>03:36:12</td>
<td>04:49:57</td>
<td>2017.1.00506.S</td>
<td>USS1558-_a_06_TM1</td>
<td>Deep contiguous mapping of the densest proto-cluster cores at z=2.5 with ALMA</td>
<td>Kodama</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:21:59</td>
<td>03:36:05</td>
<td>2017.1.00506.S</td>
<td>USS1558-_a_06_TM1</td>
<td>Deep contiguous mapping of the densest proto-cluster cores at z=2.5 with ALMA</td>
<td>Kodama</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:17:28</td>
<td>02:41:10</td>
<td>2017.1.01406.S</td>
<td>RX_J1713_c_03_7M</td>
<td>A Quest for Cosmic Ray Acceleration Site: Unveiling the Shock-Cloud Interaction toward the Young SNR RX J1713.7-3946</td>
<td>Sano</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>---</td>
<td>-------------</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>01:53:19</td>
<td>02:13:30</td>
<td>2017.1.00975.S</td>
<td>SN_2016a_a_06_TM1</td>
<td>Searching for the Smoking Gun of Magnetar-Powered Super-Luminous Supernovae</td>
<td>Murase</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:04:38</td>
<td>02:21:03</td>
<td>2017.1.00886.L</td>
<td>NGC5042_b_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>EU NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>00:01:28</td>
<td>01:11:52</td>
<td>2017.1.00975.S</td>
<td>SN_2016a_a_06_TM1</td>
<td>Searching for the Smoking Gun of Magnetar-Powered Super-Luminous Supernovae</td>
<td>Murase</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
</tbody>
</table>

2018-06-24

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>23:51:38</td>
<td>00:37:30</td>
<td>2017.1.00595.S</td>
<td>V1302_Ce_a_06_7M</td>
<td>DEATH STAR: DEtermining Accurate mass-loss rates of THERmally pulsing AGB STARS</td>
<td>Ramsteadt</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>23:23:07</td>
<td>00:36:52</td>
<td>2017.1.00886.L</td>
<td>NGC4941_b_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>EU NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>23:05:19</td>
<td>23:51:13</td>
<td>2017.1.00886.L</td>
<td>NGC3621_a_06_TM1</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>EU NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>22:27:12</td>
<td>23:51:31</td>
<td>2017.1.00766.S</td>
<td>NGC4477_a_06_7M</td>
<td>From the main sequence to the red cloud: linking the molecular cloud lifecycle to galaxy evolution</td>
<td>Chevance</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>22:12:08</td>
<td>23:05:11</td>
<td>2017.1.01176.S</td>
<td>UV-23922_a_06_TM1</td>
<td>Quiescence of quiescent galaxies at z~2</td>
<td>Tanaka</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>17:31:15</td>
<td>18:49:10</td>
<td>2017.1.01280.S</td>
<td>Orion_Ba_a_07_7M</td>
<td>The complete ALMA view of the Orion Goicoechea Bar: unexpected structures and processes</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>16:41:37</td>
<td>17:49:15</td>
<td>2016.1.00324.L</td>
<td>UDF_mosa_h_06_TM1</td>
<td>ASPECS: The ALMA SPEcTral line Survey in the UDF - An ALMA Large Program</td>
<td>Walter</td>
<td>CL EU NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>15:25:59</td>
<td>17:21:08</td>
<td>2017.1.01280.S</td>
<td>Orion_Ba_a_07_7M</td>
<td>The complete ALMA view of the Orion Goicoechea Bar: unexpected structures and processes</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>13:36:06</td>
<td>14:35:33</td>
<td>2017.1.00129.S</td>
<td>NGC1386_a_03_TP</td>
<td>Deep CO(J=1-0) mapping survey of Fornax galaxies with Morita array</td>
<td>Morokuma</td>
<td>EA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>12:36:50</td>
<td>13:47:46</td>
<td>2016.1.00324.L</td>
<td>UDF_mosa_f_06_TM1</td>
<td>ASPECS: The ALMA SPEcTral line Survey in the UDF - An ALMA Large Program</td>
<td>Walter</td>
<td>CL EU NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>12:14:30</td>
<td>13:33:42</td>
<td>2017.1.00886.L</td>
<td>NGC1097_a_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>EU NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>11:33:06</td>
<td>13:04:23</td>
<td>2017.1.00461.S</td>
<td>GMC-8_a_06_7M</td>
<td>Revealing the roles of filamentary clouds in GMC evolution of M33</td>
<td>Muraoka</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>11:22:40</td>
<td>12:32:50</td>
<td>2016.1.00324.L</td>
<td>UDF_mosa_e_06_TM1</td>
<td>ASPECS: The ALMA SPEcTral line Survey in the UDF - An ALMA Large Program</td>
<td>Walter</td>
<td>CL EU NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>10:48:01</td>
<td>12:04:33</td>
<td>2017.1.00886.L</td>
<td>NGC1097_a_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>EU NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>09:51:15</td>
<td>11:22:30</td>
<td>2017.1.00931.S</td>
<td>SWBar_Fi_a_06_7M</td>
<td>From Beginning to End -- Star Formation and Molecular Cloud Evolution in the Small Magellanic Cloud</td>
<td>Johnson</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>09:36:28</td>
<td>11:08:36</td>
<td>2017.1.01425.S</td>
<td>3C454.3_a_06_TM1</td>
<td>Probing the magneto-ionic medium at Savolainen the jet base in AGN through Faraday rotation</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>09:31:30</td>
<td>10:47:54</td>
<td>2017.1.00886.L</td>
<td>NGC1097_a_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>EU NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>08:00:01</td>
<td>09:49:51</td>
<td>2017.1.01409.S</td>
<td>NGC6822_a_07_7M</td>
<td>Revealing the mechanism of massive Fujita star formation in NGC6822</td>
<td>EA</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>07:47:19</td>
<td>09:36:22</td>
<td>2017.1.01425.S</td>
<td>3C454.3_a_06_TM1</td>
<td>Probing the magneto-ionic medium at Savolainen the jet base in AGN through Faraday rotation</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>06:40:48</td>
<td>07:45:32</td>
<td>2017.1.01093.S</td>
<td>8616-610_a_03_TM1</td>
<td>The role of molecular gas in quenching star formation of green valley galaxies</td>
<td>Lin</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>05:48:17</td>
<td>06:37:46</td>
<td>2017.1.01116.S</td>
<td>G33.738--a_03_TM1</td>
<td>High Resolution Imaging of Inflow</td>
<td>Shirley</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
</tbody>
</table>
& Infall in Massive Star-forming Clumps

Revealing the mechanism of massive star formation in NGC6822

Fujita

EA

7-m

2017.1.01409.S

NGC6822_a_07_7M

2018-06-23

Start (UT) — End (UT) — Project Code — SchedBlock — Project Title — PI — Executive — Array — Band

23:48:11 — 01:01:52 — 2017.1.00886.L — NGC4941_b_06_TP — 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution — EU NA — Total Power — 6

23:26:13 — 00:12:09 — 2017.1.00886.L — NGC3621_a_06_TM1 — 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution — EU NA — 12-m — 6

23:25:49 — 00:50:01 — 2017.1.00766.S — NGC4477_a_06_7M — From the main sequence to the red cloud: linking the molecular cloud lifecycle to galaxy evolution — Chevance — EU — 7-m — 6

22:34:14 — 23:48:04 — 2017.1.00886.L — NGC4941_b_06_TP — 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution — EU NA — Total Power — 6

22:32:05 — 23:17:44 — 2017.1.00886.L — NGC3621_b_06_TM1 — 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution — EU NA — 12-m — 6

22:01:15 — 23:25:42 — 2017.1.00766.S — NGC4477_a_06_7M — From the main sequence to the red cloud: linking the molecular cloud lifecycle to galaxy evolution — Chevance — EU — 7-m — 6

21:35:14 — 22:31:58 — 2017.1.00886.L — NGC2997_b_06_TM1 — 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution — EU NA — 12-m — 6

15:52:06 — 16:36:35 — 2017.1.00886.L — NGC1792_a_06_TP — 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution — EU NA — Total Power — 6

14:43:02 — 15:50:34 — 2016.1.00324.L — UDF_mosa_f_06_TM1 — ASPECS: The ALMA SPECtral line Survey in the UDF - An ALMA Large Program — Walter — CL EU NA — 12-m — 6

14:25:30 — 15:42:15 — 2017.1.00886.L — NGC1097_a_06_TP — 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution — EU NA — Total Power — 6

13:36:29 — 14:10:36 — 2017.1.00886.L — NGC1097_a_06_TP — 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution — EU NA — Total Power — 6

04:06:51 — 05:20:26 — 2017.1.00506.S — USS1558_a_06_TM1 — Deep contiguous mapping of the densest proto-cluster cores at z=2.5 with ALMA — Kodama — EA — 12-m — 6

02:52:47 — 04:06:45 — 2017.1.00506.S — USS1558_a_06_TM1 — Deep contiguous mapping of the densest proto-cluster cores at z=2.5 with ALMA — Kodama — EA — 12-m — 6

02:36:32 — 04:14:18 — 2017.1.00716.S — G015.20_a_06_7M — A survey of prestellar, high-mass clump candidates: constraining models of high-mass star formation — Sanhueza — EA — 7-m — 6

09:01:10 09:54:15 2017.1.01558.S LBQS0013_a_04_TM1 Molecular gas in high-redshift DLAs Prochaska NA 12-m 4

08:39:12 10:10:34 2017.1.00931.S SWBar_Fi_a_06_7M From Beginning to End -- Star Formation and Molecular Cloud Evolution in the Small Magellanic Cloud Johnson NA 7-m 6

07:28:23 09:06:52 2017.1.00716.S G025.16_a_06_TP A survey of prestellar, high-mass clump candidates: constraining models of high-mass star formation Sanhueza EA Total Power 6

07:16:05 08:38:00 2017.1.01409.S NGC6822_a_06_7M Revealing the mechanism of massive star formation in NGC6822 Fujita EA 7-m 6

06:37:07 07:15:10 2017.1.00595.S IRC-3039_a_06_7M DEATH STAR: DEtermining Accurate mass-loss rates of THERmally pulsing AGB STARS Ramstedt EU 7-m 6

06:14:26 07:47:15 2017.1.00793.S G34.4.1_a_06_TM2 Are Magnetic Fields Dynamically Important in Massive Star Formation? Zhang NA 12-m 6

04:58:04 06:35:51 2017.1.00716.S G015.20_a_06_7M A survey of prestellar, high-mass clump candidates: constraining models of high-mass star formation Sanhueza EA 7-m 6

04:24:10 06:14:18 2017.1.00793.S G34.4.1_a_06_TM2 Are Magnetic Fields Dynamically Important in Massive Star Formation? Zhang NA 12-m 6

03:23:47 04:57:07 2017.1.00716.S G015.20_a_06_7M A survey of prestellar, high-mass clump candidates: constraining models of high-mass star formation Sanhueza EA 7-m 6

03:09:11 04:24:00 2017.1.00506.S USS1558-_a_06_TM1 Deep contiguous mapping of the densest proto-cluster cores at z=2.5 with ALMA Kodama EA 12-m 6

01:59:06 03:09:04 2017.1.00975.S SN_2016a_a_06_TM1 Searching for the Smoking Gun of Magnetar-Powered Super-Luminous Supernovae Murase NA 12-m 6

01:33:55 02:53:50 2017.1.01406.S RX_J1713_c_03_7M A Quest for Cosmic Ray Acceleration Site: Unveiling the Shock-Cloud Interaction toward the Young SNR RX J1713.7-3946 Sano EA 7-m 3

01:02:16 02:15:48 2017.1.00886.L NGC4941_b_06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCS as the Drivers of Galaxy Evolution EU NA Total Power 6

00:47:14 01:57:47 2017.1.00975.S SN_2016a_a_06_TM1 Searching for the Smoking Gun of Magnetar-Powered Super-Luminous Supernovae Murase NA 12-m 6

01:00:00 01:00:00 2017.1.00000.S ASPECS: The ALMA SPECtral line Survey in the UDF - An ALMA Large Program Walter CL EU NA 12-m 6
2018-06-22

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>23:48:15</td>
<td>01:02:08</td>
<td>2017.1.00886.L</td>
<td>NGC4941_b_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>EU NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>22:36:36</td>
<td>00:00:49</td>
<td>2017.1.00766.S</td>
<td>NGC4777_a_06_7M</td>
<td>From the main sequence to the red cloud: linking the molecular cloud lifecycle to galaxy evolution</td>
<td>Chevance</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>22:25:58</td>
<td>23:37:09</td>
<td>2017.1.00886.L</td>
<td>NGC3511_a_06_TM1</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>EU NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>22:19:24</td>
<td>23:29:22</td>
<td>2017.1.00886.L</td>
<td>NGC3596_b_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>EU NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>21:19:47</td>
<td>22:17:27</td>
<td>2017.1.00886.L</td>
<td>NGC2997_b_06_TM1</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>EU NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>21:12:45</td>
<td>22:35:16</td>
<td>2017.1.00766.S</td>
<td>NGC3489_a_06_7M</td>
<td>From the main sequence to the red cloud: linking the molecular cloud lifecycle to galaxy evolution</td>
<td>Chevance</td>
<td>EU</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>21:08:11</td>
<td>22:18:21</td>
<td>2017.1.00886.L</td>
<td>NGC3596_b_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>EU NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>12:29:11</td>
<td>12:54:41</td>
<td>2017.1.00886.L</td>
<td>NGC1317_a_06_TM1</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>EU NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>11:43:20</td>
<td>13:01:16</td>
<td>2017.1.00886.L</td>
<td>NGC1097_a_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>EU NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>11:36:38</td>
<td>13:06:40</td>
<td>2017.1.00461.S</td>
<td>GMC-8_a_06_7M</td>
<td>Revealing the roles of filamentary clouds in GMC evolution of M33</td>
<td>Muraoka</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>10:53:34</td>
<td>12:18:46</td>
<td>2017.1.00508.S</td>
<td>J0235-05_a_07_TM1</td>
<td>Investigating ISM Physics at z~6 with Harikane Multiple FIR Lines of Newly-Discovered Luminous Galaxies</td>
<td>EU NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>10:00:51</td>
<td>10:52:37</td>
<td>2017.1.00161.L</td>
<td>ngc253_c_06_TM1</td>
<td>ALCHEMI: the ALMA Comprehensive Martin High-resolution Extragalactic Molecular Inventory</td>
<td>EU NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>09:40:04</td>
<td>10:00:44</td>
<td>2017.1.00239.S</td>
<td>SDSS0135_a_07_TM1</td>
<td>What sets CO excitation in clumpy, turbulent disk galaxies?</td>
<td>Fisher</td>
<td>OTHER</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>09:35:46</td>
<td>10:41:15</td>
<td>2017.1.00931.S</td>
<td>SWBar_Fi_a_06_7M</td>
<td>From Beginning to End -- Star Formation and Molecular Cloud Evolution in the Small Magellanic Cloud</td>
<td>Johnson</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>08:29:23</td>
<td>09:51:35</td>
<td>2017.1.01101.S</td>
<td>NGC_253_a_06_TP</td>
<td>Are GMCs Real? Searching for the physical objects in a multiscale ISM</td>
<td>Rosolowsky</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>08:12:22</td>
<td>09:34:20</td>
<td>2017.1.01409.S</td>
<td>NGC6822_a_06_7M</td>
<td>Revealing the mechanism of massive star formation in NGC6822</td>
<td>Fujita</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>07:38:17</td>
<td>08:35:57</td>
<td>2017.1.01093.S</td>
<td>8615-910_a_03_TM1</td>
<td>The role of molecular gas in quenching star formation of green valley galaxies</td>
<td>Lin</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>07:13:42</td>
<td>07:38:10</td>
<td>2017.1.01093.S</td>
<td>8623-127_a_03_TM1</td>
<td>The role of molecular gas in quenching star formation of green valley galaxies</td>
<td>Lin</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>07:11:22</td>
<td>08:28:32</td>
<td>2017.1.00886.L</td>
<td>NGC7456_a_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>EU NA</td>
<td>Total Power</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>06:15:07</td>
<td>07:44:37</td>
<td>2017.1.01704.S</td>
<td>B28539_a_03_7M</td>
<td>A systematic survey of dense gas kinematics and filamentary flows in massive quiescent clumps</td>
<td>Svoboda</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>--</td>
<td>-------------</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>23:54:50</td>
<td>01:11:43</td>
<td>2017.1.00886.L</td>
<td>NGC4298_b_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Vlahakis</td>
<td>NA</td>
<td>EU</td>
<td>NA</td>
</tr>
<tr>
<td>23:19:21</td>
<td>00:55:22</td>
<td>2017.1.00595.S</td>
<td>tet_Aps_a_07_7M</td>
<td>DEATH STAR: DEtermining Accurate Ramstedt mass-loss rates of THermaIIly pulsing AGB STARS</td>
<td>Sandstrom</td>
<td>NA</td>
<td>EU</td>
<td>7-m</td>
</tr>
<tr>
<td>23:07:16</td>
<td>00:28:06</td>
<td>2016.1.00972.S</td>
<td>NGC_4321_a_07_TM1</td>
<td>Revealing the Cause of "Starburst"-like Conversion Factors in Nearby Galaxy Centers</td>
<td>Sandstrom</td>
<td>NA</td>
<td>EU</td>
<td>7-m</td>
</tr>
<tr>
<td>22:37:45</td>
<td>23:54:43</td>
<td>2017.1.00886.L</td>
<td>NGC4298_b_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Sandstrom</td>
<td>NA</td>
<td>EU</td>
<td>NA</td>
</tr>
<tr>
<td>21:38:54</td>
<td>22:48:07</td>
<td>2016.1.00972.S</td>
<td>NGC_3351_a_07_TM1</td>
<td>Revealing the Cause of "Starburst"-like Conversion Factors in Nearby Galaxy Centers</td>
<td>Sandstrom</td>
<td>NA</td>
<td>EU</td>
<td>7-m</td>
</tr>
<tr>
<td>21:06:57</td>
<td>22:23:56</td>
<td>2017.1.00886.L</td>
<td>NGC4298_b_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Sandstrom</td>
<td>NA</td>
<td>EU</td>
<td>NA</td>
</tr>
<tr>
<td>20:22:09</td>
<td>21:31:03</td>
<td>2016.1.00972.S</td>
<td>NGC_3351_a_07_TM1</td>
<td>Revealing the Cause of "Starburst"-like Conversion Factors in Nearby Galaxy Centers</td>
<td>Sandstrom</td>
<td>NA</td>
<td>EU</td>
<td>7-m</td>
</tr>
<tr>
<td>19:51:11</td>
<td>21:04:37</td>
<td>2017.1.00886.L</td>
<td>NGC2903_f_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Sano</td>
<td>NA</td>
<td>EU</td>
<td>Total Power</td>
</tr>
<tr>
<td>18:50:50</td>
<td>20:00:11</td>
<td>2017.1.00428.L</td>
<td>DEIMOS_C_as_07_TM1</td>
<td>ALPINE: The ALMA Large Program to Le Fèvre Investigate CII at Early times</td>
<td>CL EA</td>
<td>EU NA</td>
<td>CL EA</td>
<td>EU NA</td>
</tr>
<tr>
<td>18:21:21</td>
<td>19:35:12</td>
<td>2017.1.00886.L</td>
<td>NGC2903_f_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Fisher</td>
<td>OTHER</td>
<td>EU</td>
<td>Total Power</td>
</tr>
<tr>
<td>18:08:08</td>
<td>18:50:03</td>
<td>2017.1.00239.S</td>
<td>G08-5_a_07_TM1</td>
<td>What sets CO excitation in clumpy, turbulent disk galaxies?</td>
<td>Fisher</td>
<td>OTHER</td>
<td>EU</td>
<td>7-m</td>
</tr>
<tr>
<td>17:51:59</td>
<td>19:41:54</td>
<td>2017.1.01280.S</td>
<td>Orion_Ba_a_07_7M</td>
<td>The complete ALMA view of the Orion Goicoechea Bar: unexpected structures and processes</td>
<td>EU</td>
<td>EU</td>
<td>EU</td>
<td>7-m</td>
</tr>
<tr>
<td>16:52:53</td>
<td>18:11:39</td>
<td>2017.1.00886.L</td>
<td>NGC1792_a_06_TP</td>
<td>100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Sano</td>
<td>NA</td>
<td>EU</td>
<td>Total Power</td>
</tr>
</tbody>
</table>
Galaxies

15:36:25 16:52:46 2017.1.00886.L NGC1097_d_06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution EU NA Total Power 6

15:09:20 17:03:07 2017.1.01280.S Orion_Ba_a_08_7M The complete ALMA view of the Orion Goicoechea Bar: unexpected structures and processes EU 7-m 8

14:08:49 15:25:55 2017.1.00886.L NGC1097_d_06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution EU NA Total Power 6

13:00:43 14:23:48 2017.1.00941.S 49_Ceti_b_07_TM1 Measuring the Chemical Composition Hughes of Molecular Gas in the Debris Disk around 49 Ceti NA 12-m 7

12:57:24 14:59:19 2017.1.00586.S NGC_1068_a_08_7M Effects of active galactic nucleus and starburst in NGC 1068: High resolution images of neutral carbon (CI) Takano EA 7-m 8

12:49:58 14:08:41 2017.1.00886.L NGC1097_d_06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution EU NA Total Power 6

12:11:57 12:42:28 2017.1.01093.S 8081-127_a_03_TM1 The role of molecular gas in quenching star formation of green valley galaxies Lin EA 12-m 3

11:43:11 12:10:12 2017.1.01093.S 8083-127_a_03_TM1 The role of molecular gas in quenching star formation of green valley galaxies Lin EA 12-m 3

11:12:42 12:43:53 2017.1.00461.S GMC-8_a_06_7M Revealing the roles of filamentary clouds in GMC evolution of M33 Muraoka EA 7-m 6

11:00:32 12:17:18 2017.1.00886.L NGC7456_a_06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution EU NA Total Power 6

10:11:33 11:12:34 2017.A.00043.T Mars_a_06_7M Time evolution of CO & H2O in the Martian atmosphere during a large-scale dust storm Dent EU 7-m 6

10:05:29 11:30:17 2017.1.00161.L ngrc253_p_07_TM1 ALCHEMIL: the ALMA Comprehensive Martin Molecular Inventory Hughes EU NA 12-m 7

09:43:13 11:00:25 2017.1.00886.L NGC7456_a_06_TP 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution EU NA Total Power 6

08:47:10 10:11:26 2017.A.00043.T Mars_a_07_7M Time evolution of CO & H2O in the Martian atmosphere during a large-scale dust storm Dent EU 7-m 7

08:37:41 10:03:37 2017.1.01209.S SSA22-LA_a_08_TM1 The state of interstellar medium in galaxies in a giant Lyman-alpha blob Umehata EU NA 12-m 8

07:40:44 08:37:34 2017.1.00239.S C22-2_a_08_TM1 What sets CO excitation in clumpy, turbulent disk galaxies? Fisher OTHER 12-m 8

07:34:07 09:11:53 2017.1.00716.S G034.13_a_06_TP A survey of prestellar, high-mass clump candidates: constraining models of high-mass star formation Sanhueza EA Total Power 6

06:57:21 08:47:03 2017.1.01409.S NGC6822_a_07_7M Revealing the mechanism of massive star formation in NGC6822 Fujita EA 7-m 7

06:17:12 07:40:37 2017.1.00239.S G20-2_a_08_TM1 What sets CO excitation in clumpy, turbulent disk galaxies? Fisher OTHER 12-m 8

05:55:27 07:34:00 2017.1.00716.S G030.70_a_06_TP A survey of prestellar, high-mass clump candidates: constraining models of high-mass star formation Sanhueza EA Total Power 6

05:19:32 06:13:20 2017.1.01406.S RX_J1713_b_03_TM1 A Quest for Cosmic Ray Acceleration Site: Unveiling the Shock-Cloud Interaction toward the Young SNR RX J1713.7-3946 Sano EA 12-m 3

05:17:22 06:38:30 2017.1.00226.S W43-MM2_a_06_7M The W43 complex: a case study for high-mass star formation Louvet CL 7-m 6

04:59:58 05:19:26 2017.1.01411.T Supernova_c_03_TM1 The Final Evolution of Massive Stars toward Supernovae Maeda EA 12-m 3

04:21:36 04:44:54 2017.1.01411.T Supernov_c_06_TM1 The Final Evolution of Massive Stars toward Supernovae Maeda EA 12-m 6

04:15:06 05:55:20 2017.1.00040.S cnd_cs76_h_07_TP Replenishing Molecular Gas Near Hsieh EA Total Power 7
2018-06-20

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>23:27:13</td>
<td>00:51:47</td>
<td>2017.1.00065.S</td>
<td>M83_a_07_TM1</td>
<td>CO-Dark Molecular Gas in the Extended Ultraviolet Disk of M83 Revealed by Dust Continuum Observations</td>
<td>Watson</td>
<td>CL</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>14:16:34</td>
<td>16:19:09</td>
<td>2017.1.00586.S</td>
<td>NGC_1068_a_08_7M</td>
<td>Effects of active galactic nucleus and starburst in NGC 1068: High resolution images of neutral carbon (CI)</td>
<td>Takano</td>
<td>EA</td>
<td>7-m</td>
<td>8</td>
</tr>
<tr>
<td>11:04:23</td>
<td>12:35:39</td>
<td>2017.1.00931.S</td>
<td>SWBar_Fi_a_06_7M</td>
<td>From Beginning to End -- Star Formation and Molecular Cloud Evolution in the Small Magellanic Cloud</td>
<td>Johnson</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>05:38:08</td>
<td>06:19:07</td>
<td>2017.1.01308.S</td>
<td>EC_53_b_06_7M</td>
<td>A multi-epoch and multi-wavelength observation of a variable YSO (EC 53) in Serpens main</td>
<td>Yoo</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
</tr>
</tbody>
</table>

2018-06-19

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>20:11:47</td>
<td>21:14:25</td>
<td>2017.1.01176.S</td>
<td>UV-25051_a_06_TM1</td>
<td>Quiescence of quiescent galaxies at z~2</td>
<td>Tanaka</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>19:00:19</td>
<td>19:43:16</td>
<td>2017.1.01176.S</td>
<td>UV-90676_a_06_TM1</td>
<td>Quiescence of quiescent galaxies at z~2</td>
<td>Tanaka</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>16:33:04</td>
<td>17:40:41</td>
<td>2016.1.00324.L</td>
<td>UDF_mosa_c_06_TM1</td>
<td>ASPECS: The ALMA SPECtral line Survey in the UDF - An ALMA Large Program</td>
<td>Walter</td>
<td>CL EU NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>15:03:46</td>
<td>16:11:30</td>
<td>2016.1.00324.L</td>
<td>UDF_mosa_c_06_TM1</td>
<td>ASPECS: The ALMA SPECtral line Survey in the UDF - An ALMA Large Program</td>
<td>Walter</td>
<td>CL EU NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>13:55:22</td>
<td>15:03:40</td>
<td>2016.1.00324.L</td>
<td>UDF_mosa_c_06_TM1</td>
<td>ASPECS: The ALMA SPECtral line Survey in the UDF - An ALMA Large Program</td>
<td>Walter</td>
<td>CL EU NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>11:17:34</td>
<td>12:27:46</td>
<td>2016.1.00324.L</td>
<td>UDF_mosa_b_06_TM1</td>
<td>ASPECS: The ALMA SPECtral line Survey in the UDF - An ALMA Large Program</td>
<td>Walter</td>
<td>CL EU NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>09:38:11</td>
<td>11:17:23</td>
<td>2017.1.01195.S</td>
<td>SDSS_J23_a_08_TM1</td>
<td>The first detection of the [OIII]88um from Two QSO host galaxies in the reionization epoch</td>
<td>Hashimoto</td>
<td>EA</td>
<td>12-m</td>
<td>8</td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>--------------</td>
<td>------------</td>
<td>---</td>
<td>----------</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>07:16:21</td>
<td>08:14:21</td>
<td>2017.1.01248.S</td>
<td>W51_e1e2_a_05_TM1</td>
<td>Formation process to glycine's precursors, CH2NH and CH3NH2</td>
<td>Suzuki</td>
<td>EA</td>
<td>12-m</td>
<td>5</td>
</tr>
<tr>
<td>05:56:27</td>
<td>07:05:30</td>
<td>2017.1.01248.S</td>
<td>G31.41+0_a_05_TM1</td>
<td>Formation process to glycine's precursors, CH2NH and CH3NH2</td>
<td>Suzuki</td>
<td>EA</td>
<td>12-m</td>
<td>5</td>
</tr>
<tr>
<td>05:06:01</td>
<td>05:50:54</td>
<td>2017.1.00107.S</td>
<td>J162138_a_06_TM1</td>
<td>Probing the Grain Growth Signatures in rho-Ophiuchi Young Stellar Objects</td>
<td>Hirano</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:25:03</td>
<td>03:34:33</td>
<td>2017.1.00886.L</td>
<td>NGC5643_a_06_TP</td>
<td>100,000 Molecular Clouds Across the Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Schinnerer</td>
<td>EU NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
</tbody>
</table>

2018-06-18

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>23:42:21</td>
<td>00:34:18</td>
<td>2017.1.00886.L</td>
<td>NGC4654_a_06_TM1</td>
<td>100,000 Molecular Clouds Across the Main Sequence: GMCs as the Drivers of Galaxy Evolution</td>
<td>Schinnerer</td>
<td>EU NA</td>
<td>12-m</td>
<td>6</td>
</tr>
</tbody>
</table>