2019-01-07

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:37:33</td>
<td>12:29:20</td>
<td>2018.1.00035.L</td>
<td>MACS1423_a_06_TM1</td>
<td>ALMA Lensing Cluster Survey</td>
<td>Kohno</td>
<td>CL EA EU NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>09:02:49</td>
<td>10:19:31</td>
<td>2018.1.00135.S</td>
<td>NGC_4666_a_06_TP</td>
<td>Extra-planar & Diffuse Molecular Gas in Spiral Galaxies</td>
<td>Zschaechner</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>08:20:21</td>
<td>09:30:57</td>
<td>2017.1.00428.L</td>
<td>DEIMOS_C_s_07_TM1</td>
<td>ALPINE: The ALMA Large Program to Le Fèvre Investigate CII at Early times</td>
<td>CL EA EU NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>07:45:44</td>
<td>09:02:41</td>
<td>2018.1.00135.S</td>
<td>NGC_4666_a_06_TP</td>
<td>Extra-planar & Diffuse Molecular Gas in Spiral Galaxies</td>
<td>Zschaechner</td>
<td>EU</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>07:05:58</td>
<td>08:20:14</td>
<td>2017.1.00428.L</td>
<td>DEIMOS_C_k_07_TM1</td>
<td>ALPINE: The ALMA Large Program to Le Fèvre Investigate CII at Early times</td>
<td>CL EA EU NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>06:46:36</td>
<td>08:10:59</td>
<td>2018.1.01783.S</td>
<td>Sextans_b_03_7M</td>
<td>Detecting carbon monoxide and neutral carbon in low metallicity dwarf galaxy Sextans A</td>
<td>Donovan Meyer</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>05:52:11</td>
<td>07:05:52</td>
<td>2017.1.00428.L</td>
<td>DEIMOS_C_s_07_TM1</td>
<td>ALPINE: The ALMA Large Program to Le Fèvre Investigate CII at Early times</td>
<td>CL EA EU NA</td>
<td>12-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>04:59:04</td>
<td>06:19:29</td>
<td>2018.1.01565.S</td>
<td>HOPS_87_a_06_TP</td>
<td>Tracing the accretion history of protostars using outflows, an ACA+TP survey</td>
<td>Megeath</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>04:40:18</td>
<td>06:05:20</td>
<td>2018.1.01336.S</td>
<td>OriBupfi_a_03_7M</td>
<td>Investigating the multi-mode hierarchical fragmentation of a star forming filament in the Orion B molecular cloud</td>
<td>Arzoumanian</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>03:19:26</td>
<td>04:40:10</td>
<td>2018.1.01336.S</td>
<td>OriBupfi_a_03_7M</td>
<td>Investigating the multi-mode hierarchical fragmentation of a star forming filament in the Orion B molecular cloud</td>
<td>Arzoumanian</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
</tbody>
</table>

2019-01-06

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>23:16:01</td>
<td>00:43:35</td>
<td>2018.1.01171.S</td>
<td>NGC_1097_a_03_7M</td>
<td>An ACA Survey of Dense Gas Across, Leroy the Nearest, Brightest Southern Galaxy Disks</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>21:38:15</td>
<td>23:08:11</td>
<td>2018.1.01171.S</td>
<td>NGC_1097_a_03_7M</td>
<td>An ACA Survey of Dense Gas Across, Leroy the Nearest, Brightest Southern Galaxy Disks</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>19:56:45</td>
<td>21:31:06</td>
<td>2018.1.00940.S</td>
<td>RXC_J201_a_03_7M</td>
<td>SZ observations of 3 Cool-Core Clusters on the Sloshing Spectrum</td>
<td>Mroczkowski</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>18:34:14</td>
<td>19:56:37</td>
<td>2018.1.01787.S</td>
<td>W43-MM1_a_03_7M</td>
<td>Searching for high-mass pre-stellar cores in an exceptional nursery</td>
<td>Louvet</td>
<td>CL</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>17:09:15</td>
<td>17:34:34</td>
<td>2018.1.01780.S</td>
<td>W49B_b_06_TP</td>
<td>Detailed observations of molecular cloud toward the peculiar supernova remnant W49B</td>
<td>Yoshiike</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>16:54:29</td>
<td>17:12:02</td>
<td>2018.1.00659.L</td>
<td>T_mic_a_06_TM1</td>
<td>ATOMIUM: ALMA Tracing the Origins Decin of Molecules In DUST-forming oxygen-rich M-type stars</td>
<td>EU NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>15:47:06</td>
<td>16:05:04</td>
<td>2018.1.00659.L</td>
<td>S_Pav_e_06_TM1</td>
<td>ATOMIUM: ALMA Tracing the Origins Decin of Molecules In DUST-forming oxygen-rich M-type stars</td>
<td>EU NA</td>
<td>12-m</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>15:45:45</td>
<td>16:31:40</td>
<td>2018.1.00850.S</td>
<td>G028.37+_a_03_7M</td>
<td>From filaments to cores: Dynamics in infrared dark clouds</td>
<td>Barnes</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
</tbody>
</table>
14:53:44 L483_a_06_TM2 2018.1.01205.L
14:56:01 Masses Fifty AU STudy of the chemistry in the Yamamoto disk/envelope system of Solar-like protostars (FAUST)
15:16:03 From filaments to cores: Dynamics in infrared dark clouds Barnes EU NA 12-m 6
15:16:33 Kes75_PW_a_04_TM1 2018.1.00976.U
15:43:37 Mapping the youngest pulsar wind nebula in the Galaxy Posselt NA 12-m 4
15:57:54 G010.62_a_06_TP 2017.1.01355.L
16:07:54 ALMA-IMF: ALMA transforms our view of the origin of stellar masses Motte CL EA EU NA Total Power 6
16:18:12 U_Her_f_06_TM1 2018.1.00659.L
16:38:12 ATOMIUM: ALMA Tracing the Origins Decin of Molecules In dUst-forming oxygen-rich M-type stars EU NA 12-m 6
12:26:39 RW_Sco_e_06_TM1 2018.1.00659.L
12:46:03 ATOMIUM: ALMA Tracing the Origins Decin of Molecules In dUst-forming oxygen-rich M-type stars EU NA 12-m 6
12:06:15 U_Her_e_06_TM1 2018.1.00659.L
12:26:32 ATOMIUM: ALMA Tracing the Origins Decin of Molecules In dUst-forming oxygen-rich M-type stars EU NA 12-m 6
12:03:13 Oph-C-N_a_06_7M 2018.1.01639.S
13:24:28 Highly deuterated starless cores with low CO freeze out: a chemical puzzle Punanova EU 7-m 6
11:57:02 Oph-C-N_a_06_TP 2018.1.01639.S
13:21:50 Highly deuterated starless cores with low CO freeze out: a chemical puzzle Punanova EU Total Power 6
11:46:38 R_Hya_f_06_TM1 2018.1.00659.L
12:04:03 ATOMIUM: ALMA Tracing the Origins Decin of Molecules In dUst-forming oxygen-rich M-type stars EU NA 12-m 6
11:09:59 MACS1311_a_06_TM1 2018.1.00035.L
11:41:32 ALMA Lensing Cluster Survey Kohno CL EA EU NA 12-m 6
10:48:59 NGC4579_a_06_TP 2017.1.00886.L
11:54:59 100,000 Molecular Clouds Across the Schinnerer Main Sequence: GMCs as the Drivers of Galaxy Evolution EU NA Total Power 6
10:32:08 IRAS_153_a_06_TM2 2018.1.01205.L
10:59:27 Fifty AU STudy of the chemistry in the Yamamoto disk/envelope system of Solar-like protostars (FAUST) EU NA 12-m 6
10:12:28 Sextans_b_03_7M 2018.1.01783.S
11:36:37 Detecting carbon monoxide and neutral carbon in low metallicity dwarf irregular galaxy Sextans A Donovan Meyer NA 7-m 3
09:42:38 M83_a_03_TP 2017.1.00079.S
10:40:44 Mapping Molecular ISM in the Whole Disk of M83 Koda NA Total Power 3
09:22:14 MACS1206_a_06_TM1 2018.1.00035.L
10:23:05 ALMA Lensing Cluster Survey Kohno CL EA EU NA 12-m 6
08:46:04 NGC4565_b_06_7M 2018.1.01050.S
10:11:12 Heavily Resolving The Molecular Gas Utomo Layer in a Prototype of Edge-on Galaxies: NGC 4565 NA 7-m 6
08:44:37 M83_a_03_TP 2017.1.00079.S
09:41:56 Mapping Molecular ISM in the Whole Disk of M83 Koda NA Total Power 3
08:31:58 MACS1115_a_06_TM1 2018.1.00035.L
09:09:22 ALMA Lensing Cluster Survey Kohno CL EA EU NA 12-m 6
07:47:55 M83_a_03_TP 2017.1.00079.S
08:44:31 Mapping Molecular ISM in the Whole Disk of M83 Koda NA Total Power 3
07:21:05 G09v1.97_a_04_TM1 2018.1.00797.S
08:27:20 Probing the dense gas properties and Yang star formation in a z = 3.6 lensed SMG using dense gas tracers and CO isotopologues EU 12-m 4
06:15:37 G09v1.97_a_04_TM1 2018.1.00797.S
07:19:27 Probing the dense gas properties and Yang star formation in a z = 3.6 lensed SMG using dense gas tracers and CO isotopologues EU 12-m 4
06:14:09 Sextans_b_03_7M 2018.1.01783.S
07:38:37 Detecting carbon monoxide and neutral carbon in low metallicity dwarf irregular galaxy Sextans A Donovan Meyer NA 7-m 3
04:58:37 HOPS_87_a_06_TP 2018.1.01565.S
06:19:13 Tracing the accretion history of protostars using outflows, an ACA+TP survey Megeath NA Total Power 6
04:58:25 HOPS-11_a_06_TM1 2018.1.00744.S
06:08:26 Evolution of outflow-envelope interactions in low-mass protostars Arce NA 12-m 6
04:38:30 Rosette_a_03_7M 2018.1.00326.S
06:07:58 The Rosette protocluster: testing cluster formation theories Stutz CL 7-m 3
03:39:34 HOPS-11_a_06_TM1 2018.1.00744.S
04:47:04 Evolution of outflow-envelope interactions in low-mass protostars Arce NA 12-m 6
03:28:27 HOPS-200_a_06_TP 2018.1.00744.S
04:56:15 Evolution of outflow-envelope interactions in low-mass protostars Arce NA Total Power 6
03:18:07 OriBupfi_a_03_7M 2018.1.01336.S
04:38:22 Investigating the multi-mode hierarchical fragmentation of a star forming filament in the Orion Arozoumanian EA 7-m 3
2019-01-05

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>23:41:21</td>
<td>00:42:48</td>
<td>2018.1.00541.S</td>
<td>58773151_d_03_TM1</td>
<td>Why is star formation boosted from the inside out in low z starburst galaxies?</td>
<td>Ellison</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>22:41:48</td>
<td>00:12:24</td>
<td>NGC_1097_a_03_7M</td>
<td>NGC_1097_a_03_7M</td>
<td>An ACA Survey of Dense Gas Across, Leroy the Nearest, Brightest Southern</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Galaxy Disks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23:41:28</td>
<td>00:41:14</td>
<td>2018.1.00541.S</td>
<td>58773151_d_03_TM1</td>
<td>Why is star formation boosted from the inside out in low z starburst galaxies?</td>
<td>Ellison</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>15:08:29</td>
<td>15:56:23</td>
<td>Oph_A_N6_a_03_TM2</td>
<td>Oph_A_N6_a_03_TM2</td>
<td>Cores on the cusp of star formation</td>
<td>Friesen</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>14:48:53</td>
<td>16:08:27</td>
<td>G028.53-a_03_TP</td>
<td>G028.53-a_03_TP</td>
<td>From filaments to cores: Dynamics in infrared dark clouds</td>
<td>Barnes</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>14:36:53</td>
<td>16:03:05</td>
<td>G14.2-N_a_03_7M</td>
<td>G14.2-N_a_03_7M</td>
<td>Is it raining over hub-filament systems?</td>
<td>Busquet</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>13:50:37</td>
<td>14:47:03</td>
<td>M83_a_03_TP</td>
<td>M83_a_03_TP</td>
<td>Mapping Molecular ISM in the Whole Disk of M83</td>
<td>Koda</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>13:34:30</td>
<td>14:31:22</td>
<td>G341.215_a_03_TM1</td>
<td>G341.215_a_03_TM1</td>
<td>How is the mass assembled in high-mass star-forming regions?</td>
<td>Traficante</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>12:53:08</td>
<td>13:50:06</td>
<td>M83_a_03_TP</td>
<td>M83_a_03_TP</td>
<td>Mapping Molecular ISM in the Whole Disk of M83</td>
<td>Koda</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>12:35:57</td>
<td>13:33:10</td>
<td>G341.215_a_03_TM1</td>
<td>G341.215_a_03_TM1</td>
<td>How is the mass assembled in high-mass star-forming regions?</td>
<td>Traficante</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>11:46:51</td>
<td>12:44:27</td>
<td>M83_a_03_TP</td>
<td>M83_a_03_TP</td>
<td>Mapping Molecular ISM in the Whole Disk of M83</td>
<td>Koda</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>11:26:37</td>
<td>12:51:16</td>
<td>J141955._b_03_7M</td>
<td>J141955._b_03_7M</td>
<td>Redshifts of bright Herschel gravitational lenses</td>
<td>Serjeant</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>11:14:18</td>
<td>12:23:41</td>
<td>M83_e_03_TM1</td>
<td>M83_e_03_TM1</td>
<td>Mapping Molecular ISM in the Whole Disk of M83</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10:20:36</td>
<td>11:39:09</td>
<td>NGC_5643_a_03_TP</td>
<td>NGC_5643_a_03_TP</td>
<td>An ACA Survey of Dense Gas Across, Leroy the Nearest, Brightest Southern</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Galaxy Disks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:47:42</td>
<td>11:16:41</td>
<td>spiderwe_a_03_7M</td>
<td>spiderwe_a_03_7M</td>
<td>First detection of the hot intra-cluster gas in a proto-cluster at z ~ 2</td>
<td>Saro</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>09:32:28</td>
<td>10:42:16</td>
<td>M83_a_03_TM1</td>
<td>M83_a_03_TM1</td>
<td>Mapping Molecular ISM in the Whole Disk of M83</td>
<td>Koda</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>09:22:59</td>
<td>10:20:28</td>
<td>M83_a_03_TP</td>
<td>M83_a_03_TP</td>
<td>Mapping Molecular ISM in the Whole Disk of M83</td>
<td>Koda</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>08:26:55</td>
<td>09:32:20</td>
<td>58774206_a_03_TM1</td>
<td>58774206_a_03_TM1</td>
<td>Why is star formation boosted from the inside out in low z starburst galaxies?</td>
<td>Ellison</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>08:26:26</td>
<td>09:22:51</td>
<td>M83_a_03_TP</td>
<td>M83_a_03_TP</td>
<td>Mapping Molecular ISM in the Whole Disk of M83</td>
<td>Koda</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>08:18:11</td>
<td>09:47:35</td>
<td>spiderwe_a_03_7M</td>
<td>spiderwe_a_03_7M</td>
<td>First detection of the hot intra-cluster gas in a proto-cluster at z ~ 2</td>
<td>Saro</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>07:15:03</td>
<td>08:22:00</td>
<td>NGC4038_a_03_TM2</td>
<td>NGC4038_a_03_TM2</td>
<td>Adjusting the Reception of The Antennae: A Clear Look at GMCs in a Major Merger</td>
<td>Wilson</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>06:57:58</td>
<td>08:17:31</td>
<td>CI_J1001_a_03_7M</td>
<td>CI_J1001_a_03_7M</td>
<td>The hot beginning of massive halos: SZ confirmation of a z~2.5 galaxy cluster</td>
<td>Gobat</td>
<td>CL</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>05:51:19</td>
<td>07:14:56</td>
<td>OriBupfi_a_03_TM1</td>
<td>OriBupfi_a_03_TM1</td>
<td>Investigating the multi-mode hierarchical fragmentation of a star forming filament in the Orion B molecular cloud</td>
<td>Arzoumanian</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>05:32:38</td>
<td>06:57:51</td>
<td>OriBupfi_a_03_7M</td>
<td>OriBupfi_a_03_7M</td>
<td>Investigating the multi-mode hierarchical fragmentation of a star forming filament in the Orion B molecular cloud</td>
<td>Arzoumanian</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>04:27:39</td>
<td>05:51:12</td>
<td>OriBupfi_a_03_TM1</td>
<td>OriBupfi_a_03_TM1</td>
<td>Investigating the multi-mode hierarchical fragmentation of a star forming filament in the Orion B molecular cloud</td>
<td>Arzoumanian</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
<td>---</td>
<td>----------</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>04:11:54</td>
<td>05:32:30</td>
<td>2018.1.01336.S</td>
<td>OrlBupfi_a_03_7M</td>
<td>Investigating the multi-mode hierarchical fragmentation of a star forming filament in the Orion B molecular cloud</td>
<td>Arzoumanian</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>03:06:31</td>
<td>04:27:32</td>
<td>2018.1.01336.S</td>
<td>OrlBupfi_a_03_TM1</td>
<td>Investigating the multi-mode hierarchical fragmentation of a star forming filament in the Orion B molecular cloud</td>
<td>Arzoumanian</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>02:25:52</td>
<td>03:46:39</td>
<td>2018.1.01336.S</td>
<td>OrlBupfi_a_03_7M</td>
<td>Investigating the multi-mode hierarchical fragmentation of a star forming filament in the Orion B molecular cloud</td>
<td>Arzoumanian</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>02:02:13</td>
<td>03:06:24</td>
<td>2017.1.01367.S</td>
<td>B213_a_03_TM1</td>
<td>Disentangling the fibers of L1495/B213</td>
<td>Tafalla</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>00:51:33</td>
<td>02:12:37</td>
<td>2018.1.01336.S</td>
<td>OrlBupfi_a_03_7M</td>
<td>Investigating the multi-mode hierarchical fragmentation of a star forming filament in the Orion B molecular cloud</td>
<td>Arzoumanian</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>00:35:11</td>
<td>01:41:47</td>
<td>2017.1.01367.S</td>
<td>B213_a_03_TM1</td>
<td>Disentangling the fibers of L1495/B213</td>
<td>Tafalla</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
</tbody>
</table>

2019-01-04

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>23:32:35</td>
<td>00:35:03</td>
<td>2018.1.00478.S</td>
<td>ALMA_3mm_b_03_TM1</td>
<td>On the nature of 3mm-selected sources: the highest redshift dusty star-forming galaxies?</td>
<td>Zavala</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>23:24:44</td>
<td>00:51:25</td>
<td>2018.1.00219.S</td>
<td>NGC625_a_03_7M</td>
<td>Stellar feedback and gas scaling relations in nearby metal-poor dwarf starbursts</td>
<td>Hunt</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>22:24:39</td>
<td>23:32:28</td>
<td>2018.1.00164.S</td>
<td>uds_1090_a_03_TM1</td>
<td>A survey for the molecular gas content in star-forming galaxies at z~1.5: exploiting the VLT/KMOS and ALMA synergy</td>
<td>Ibar</td>
<td>CL</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>21:57:27</td>
<td>22:24:34</td>
<td>2018.1.01031.S</td>
<td>SNR1E010_a_03_TM2</td>
<td>Revealing dust processing in the young supernova remnant 1E0102.2-72129 in the SMC</td>
<td>Vogt</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>20:22:14</td>
<td>21:18:36</td>
<td>2018.1.00541.S</td>
<td>S8801550_a_03_TM1</td>
<td>Why is star formation boosted from the inside out in low z starburst galaxies?</td>
<td>Ellison</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
</tbody>
</table>

2019-01-01

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:53:24</td>
<td>14:50:00</td>
<td>2017.1.00079.S</td>
<td>M83_a_03_TP</td>
<td>Mapping Molecular ISM in the Whole Disk of M83</td>
<td>Koda</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>13:00:28</td>
<td>14:25:23</td>
<td>2018.1.00804.S</td>
<td>J142140..a_03_7M</td>
<td>Redshifts of bright Herschel gravitational lenses</td>
<td>Serjeant</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>11:31:50</td>
<td>13:00:21</td>
<td>2018.1.01526.S</td>
<td>spiderwe_a_03_7M</td>
<td>First detection of the hot intra-cluster gas in a proto-cluster at z ~ 2</td>
<td>Saro</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>09:52:22</td>
<td>11:21:29</td>
<td>2018.1.01526.S</td>
<td>spiderwe_a_03_7M</td>
<td>First detection of the hot intra-cluster gas in a proto-cluster at z ~ 2</td>
<td>Saro</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>09:27:37</td>
<td>10:32:50</td>
<td>2018.1.00541.S</td>
<td>58774206_a_03_TM1</td>
<td>Why is star formation boosted from the inside out in low z starburst galaxies?</td>
<td>Ellison</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>08:22:23</td>
<td>09:51:49</td>
<td>2018.1.01526.S</td>
<td>spiderwe_a_03_7M</td>
<td>First detection of the hot intra-cluster gas in a proto-cluster at z ~ 2</td>
<td>Saro</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>08:21:41</td>
<td>09:27:30</td>
<td>2018.1.01739.S</td>
<td>Cosmos34_b_03_TM1</td>
<td>Out of gas? Characterizing the gas in a proto-cluster at z ~ 2</td>
<td>Williams</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
</tbody>
</table>
Out of gas? Characterizing the link between gas depletion and quenching in massive quiescent galaxies at $z \approx 1.5$

The highest resolution imaging of the Sunyaev-Zeldovich effect at $z > 1$

Cold cases: molecular gas and outflows in two unique X-ray obscured Quasars at $z \approx 1.5$

Investigating the multi-mode hierarchical fragmentation of a star forming filament in the Orion B molecular cloud

Stellar feedback and gas scaling relations in nearby metal-poor dwarf starbursts

Stellar feedback and gas scaling relations in nearby metal-poor dwarf starbursts

Revealing dust processing in the young supernova remnant 1E0102.2-72129 in the SMC

Stellar feedback and gas scaling relations in nearby metal-poor dwarf starbursts

Why is star formation boosted from the inside out in low z starburst galaxies?