<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:51:47</td>
<td>17:00:55</td>
<td>2021.1.00172.L</td>
<td>Sgr_A_st_f_03_TP</td>
<td>ACES: The ALMA CMZ Exploration Survey</td>
<td>Longmore</td>
<td>EA EU NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>12:42:07</td>
<td>13:38:36</td>
<td>2022.1.00338.L</td>
<td>HD170773_a_07_TM1</td>
<td>The ALMA survey to Resolve exoKuiper belt Substructures (ARKS)</td>
<td>Marino</td>
<td>EU NA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>11:18:38</td>
<td>12:24:52</td>
<td>2022.1.00212.S</td>
<td>herbs137_a_08_7M</td>
<td>A Comprehensive [CII] Survey of Herschel-Selected Starbursts at z=3-6</td>
<td>Riechers</td>
<td>NA</td>
<td>7-m</td>
<td>8</td>
</tr>
<tr>
<td>10:46:45</td>
<td>12:02:08</td>
<td>2022.1.00859.S</td>
<td>m83_a_08_TP</td>
<td>Exploring molecular clouds in the spiral arm region of M83 in [CII]</td>
<td>Miyamoto</td>
<td>EA</td>
<td>Total Power</td>
<td>8</td>
</tr>
<tr>
<td>10:29:12</td>
<td>12:02:12</td>
<td>2022.1.01477.S</td>
<td>PDS70pol_a_07_TM2</td>
<td>Examining the Dust Dynamics Induced by Planet-disk Interaction</td>
<td>Liu</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>09:57:10</td>
<td>11:18:30</td>
<td>2022.1.00212.S</td>
<td>herbs134_a_08_7M</td>
<td>A Comprehensive [CII] Survey of Herschel-Selected Starbursts at z=3-6</td>
<td>Riechers</td>
<td>NA</td>
<td>7-m</td>
<td>8</td>
</tr>
<tr>
<td>09:27:39</td>
<td>10:46:38</td>
<td>2022.1.00859.S</td>
<td>m83_a_08_TP</td>
<td>Exploring molecular clouds in the spiral arm region of M83 in [CII]</td>
<td>Miyamoto</td>
<td>EA</td>
<td>Total Power</td>
<td>8</td>
</tr>
<tr>
<td>08:45:04</td>
<td>10:29:08</td>
<td>2022.1.01477.S</td>
<td>PDS70pol_a_07_TM2</td>
<td>Examining the Dust Dynamics Induced by Planet-disk Interaction</td>
<td>Liu</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>08:41:52</td>
<td>09:57:06</td>
<td>2022.1.00212.S</td>
<td>herbs129_a_08_7M</td>
<td>A Comprehensive [CII] Survey of Herschel-Selected Starbursts at z=3-6</td>
<td>Riechers</td>
<td>NA</td>
<td>7-m</td>
<td>8</td>
</tr>
<tr>
<td>08:08:31</td>
<td>09:27:35</td>
<td>2022.1.01801.S</td>
<td>NGC5068_a_08_TP</td>
<td>Can CI trace CO-dark molecular gas at kpc scale?</td>
<td>Liu</td>
<td>EU</td>
<td>Total Power</td>
<td>8</td>
</tr>
<tr>
<td>08:08:11</td>
<td>08:45:00</td>
<td>2022.1.00640.S</td>
<td>V_Hya_a_08_TM2</td>
<td>Probing the Heart of a DUDE - The Central 200 AU of the Expanding Disk in the Carbon Star, V Hya</td>
<td>Sahai</td>
<td>NA</td>
<td>12-m</td>
<td>8</td>
</tr>
<tr>
<td>07:39:27</td>
<td>08:41:48</td>
<td>2022.1.00212.S</td>
<td>herbs175_a_08_7M</td>
<td>A Comprehensive [CII] Survey of Herschel-Selected Starbursts at z=3-6</td>
<td>Riechers</td>
<td>NA</td>
<td>7-m</td>
<td>8</td>
</tr>
<tr>
<td>07:30:24</td>
<td>08:08:07</td>
<td>2022.1.01771.S</td>
<td>ZC-40730_b_07_TM2</td>
<td>Resolving the feedback action of cosmic rays in distant star-forming galaxies</td>
<td>Owen</td>
<td>EA</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>06:41:53</td>
<td>07:58:33</td>
<td>2022.1.00067.S</td>
<td>Spiderwe_a_04_TP</td>
<td>Cold halo around the massive Spiderweb Galaxy</td>
<td>Andreani</td>
<td>EU</td>
<td>Total Power</td>
<td>4</td>
</tr>
<tr>
<td>06:22:39</td>
<td>07:27:50</td>
<td>2022.1.01654.S</td>
<td>NGC3627_a_06_TM2</td>
<td>Untangling the dynamics and structure of complex star-forming systems: bar-ends of the star-forming disc galaxy NGC3627</td>
<td>Beasley</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>06:09:09</td>
<td>07:32:59</td>
<td>2022.1.01163.S</td>
<td>G_41-14-a_06_7M</td>
<td>Simultaneous Monitoring of Stellar Flares with ALMA and TESS to Discover Space Weather Environments of Exoplanets</td>
<td>Howard</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>05:11:29</td>
<td>06:17:08</td>
<td>2022.1.01356.S</td>
<td>RXC0911+_a_04_TM1</td>
<td>A Quest toward the Faint End of the Infrared Luminosity Function at z>4</td>
<td>Egami</td>
<td>NA</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>04:48:09</td>
<td>06:09:06</td>
<td>2022.1.01163.S</td>
<td>G_41-14-a_06_7M</td>
<td>Simultaneous Monitoring of Stellar Flares with ALMA and TESS to Discover Space Weather Environments of Exoplanets</td>
<td>Howard</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>03:51:43</td>
<td>04:43:23</td>
<td>2022.1.01493.S</td>
<td>COS-9551_a_06_TM1</td>
<td>Ionized islands in a neutral Universe: constraining early galaxy evolution through "reionized bubbles"</td>
<td>Castellano</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>03:26:43</td>
<td>04:48:06</td>
<td>2022.1.01163.S</td>
<td>G_41-14-a_06_7M</td>
<td>Simultaneous Monitoring of Stellar Flares with ALMA and TESS to Discover Space Weather Environments of Exoplanets</td>
<td>Howard</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>---</td>
<td>----------------</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>02:13:08</td>
<td>02:42:24</td>
<td>2022.1.00875.L</td>
<td>DR_Tau_a_06_TM1</td>
<td>Molecules in Protostars with ALMA Spectral Surveys</td>
<td>Cleeves</td>
<td>CL EA EU NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:58:54</td>
<td>03:26:39</td>
<td>2022.1.00342.S</td>
<td>HOPS-168_a_06_7M</td>
<td>The ALMA Disk-Exoplanet C/Onnection</td>
<td>Arce</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>01:21:56</td>
<td>01:46:08</td>
<td>2022.1.01108.S</td>
<td>GW_Ori_b_06_7M</td>
<td>Probing the Kinematics of Streamers</td>
<td>Galloway-Sprietema</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>01:04:26</td>
<td>01:54:21</td>
<td>2022.1.01003.S</td>
<td>SPT0459-._a_04_TM1</td>
<td>Following the energy trail with CH+ in strongly lensed starburst galaxies before cosmic noon</td>
<td>Vidal-Garcia</td>
<td>EU</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>00:05:06</td>
<td>01:02:53</td>
<td>2022.1.01003.S</td>
<td>SPT0425-._a_04_TM1</td>
<td>Following the energytrail with CH+ in strongly lensed starburst galaxies before cosmic noon</td>
<td>Vidal-Garcia</td>
<td>EU</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>00:00:35</td>
<td>01:21:28</td>
<td>2022.1.00427.S</td>
<td>J0459-AC_a_03_7M</td>
<td>The Sunyaev-Zel'dovich effect toward Kitayama a distant galaxy cluster at z=1.7</td>
<td>EA</td>
<td>7-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>23:04:41</td>
<td>00:04:28</td>
<td>2022.1.00360.S</td>
<td>NGC0628_a_03_TP</td>
<td>ALMA-FACTS: Fundamental CO 1-0 Transition Survey of Nearby Galaxies</td>
<td>Koda</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>22:38:45</td>
<td>00:00:31</td>
<td>2022.1.01515.S</td>
<td>RGALX042_a_03_7M</td>
<td>An unbiased census of the molecular gas content in the most massive galaxies in the nearby Universe</td>
<td>Janssen</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>21:07:24</td>
<td>22:30:25</td>
<td>2022.1.01314.S</td>
<td>NGC_1371_a_03_7M</td>
<td>ACA CO 1-0 Maps to Match MeerKatLeroy 21-cm Maps</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>20:00:04</td>
<td>20:28:30</td>
<td>2022.1.01515.S</td>
<td>RGALX001_a_03_7M</td>
<td>An unbiased census of the molecular gas content in the most massive galaxies in the nearby Universe</td>
<td>Janssen</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>19:56:38</td>
<td>21:06:14</td>
<td>2022.1.00680.S</td>
<td>AzTEC1_a_03_TM1</td>
<td>A deep molecular gas map at the node of the cosmic web at z=3</td>
<td>Umehata</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>18:33:42</td>
<td>19:43:30</td>
<td>2022.1.00680.S</td>
<td>AzTEC1_a_03_TM1</td>
<td>A deep molecular gas map at the node of the cosmic web at z=3</td>
<td>Umehata</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>18:33:16</td>
<td>19:59:05</td>
<td>2022.1.00992.S</td>
<td>B335_a_03_TP</td>
<td>Fully characterization of streamers in the embedded phases of star formation</td>
<td>Pineda</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>17:08:23</td>
<td>18:26:14</td>
<td>2022.1.01204.S</td>
<td>C15_a_03_7M</td>
<td>Forming hub-filament systems: An unbiased study of the gas kinematics of increasingly complex filamentary structures</td>
<td>Peretto</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>16:41:43</td>
<td>17:45:25</td>
<td>2022.1.00131.S</td>
<td>RCrA_IRA_a_03_TM1</td>
<td>Outflows in Class 0/I Protostars with ALMA: A multi-scale approach</td>
<td>Plunkett</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>15:45:16</td>
<td>17:07:38</td>
<td>2022.1.00591.S</td>
<td>flow16_a_06_7M</td>
<td>The 'Missing Link': Gas Accretion Flows in the Galactic Bar toward the Central Molecular Zone</td>
<td>Ott</td>
<td>NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>15:17:49</td>
<td>16:15:55</td>
<td>2022.1.01080.S</td>
<td>Venus_a_03_TM1</td>
<td>Dynamics in Venus' Sub-cloud Atmosphere</td>
<td>Akins</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>14:29:42</td>
<td>15:11:33</td>
<td>2022.1.00131.S</td>
<td>B335_a_03_TM1</td>
<td>Outflows in Class 0/I Protostars with ALMA: A multi-scale approach</td>
<td>Plunkett</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>13:13:02</td>
<td>14:46:32</td>
<td>2022.1.00665.S</td>
<td>EES2009_a_07_7M</td>
<td>Toward a complete census of methanol budget in isolated protostars</td>
<td>Yang</td>
<td>EA</td>
<td>7-m</td>
<td>7</td>
</tr>
<tr>
<td>12:45:20</td>
<td>14:08:11</td>
<td>2022.1.00591.S</td>
<td>flow09_a_06_TP</td>
<td>The 'Missing Link': Gas Accretion Flows in the Galactic Bar toward the Central Molecular Zone</td>
<td>Ott</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>12:31:04</td>
<td>14:04:51</td>
<td>2022.1.00875.L</td>
<td>Sz123B_a_06_TM1</td>
<td>The ALMA Disk-Exoplanet C/Onnection</td>
<td>Cleeves</td>
<td>CL EA EU NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>Start (UT)</td>
<td>End (UT)</td>
<td>Project Code</td>
<td>SchedBlock</td>
<td>Project Title</td>
<td>PI</td>
<td>Executive</td>
<td>Array</td>
<td>Band</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>--</td>
<td>------------------</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>23:40:17</td>
<td>01:00:59</td>
<td>2022.1.000427.S</td>
<td>J0459-AC_a_03_7M</td>
<td>The Sunyaev-Zel'dovich effect toward Kitayama a distant galaxy cluster at z=1.7</td>
<td>Aravena</td>
<td>EA</td>
<td>NA</td>
<td>7-m</td>
</tr>
<tr>
<td>23:31:21</td>
<td>00:45:15</td>
<td>2022.1.00360.S</td>
<td>NGC1097_a_03_TP</td>
<td>ALMA-FACTS: FundAmental CO 1-0 Transition Survey of Nearby Galaxies</td>
<td>Plunkett</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
</tbody>
</table>

2023-01-21
22:30:46 2022.1.00360.S NGC0628_a_03_TP ALMA-FACTS: FundAmental CO 1-0 Transition Survey of Nearby Galaxies CL 12-m 3
20:09:38 2022.1.01314.S NGC_1371_a_03_7M ACA CO 1-0 Maps to Match MeerKAT Leroy 21-cm Maps NA 7-m 3
21:49:00 2022.1.01300.S SPT0303_-c_03_TM1 SPT0303-59: The most extreme proto Aravena cluster candidate from the SPT sample CL 12-m 3

19:28:31 20:49:59 2022.1.00052.S HerBS-98_b_04_7M The Home Straight - CO Redshifts of Herschel's Brightest SMGs Bakx EA 7-m 4
19:13:29 20:23:16 2022.1.00680.S AzTEC1_a_03_TM1 A deep molecular gas map at the node of the cosmic web at z=3 Umehata EA 12-m 3
18:03:07 19:20:38 2022.1.00052.S HerBS-98_c_04_7M The Home Straight - CO Redshifts of Herschel's Brightest SMGs Bakx EA 7-m 4
17:55:30 19:05:16 2022.1.00680.S AzTEC1_a_03_TM1 A deep molecular gas map at the node of the cosmic web at z=3 Umehata EA 12-m 3
17:33:44 18:54:44 2022.1.00992.S B335_a_03_TP Fully characterization of streamers in the embedded phases of star formation Pineda EU Total Power 3
16:45:27 18:03:03 2022.1.01204.S C15_a_03_7M Forming hub-filament systems: An unbiased study of the gas kinematics of increasingly complex filamentary structures Peretto EU 7-m 3
16:35:01 17:37:35 2022.1.00333.S SPT-CL_J-a_03_TM1 Is the star formation in one of the most massive cluster at z=1 fuelled by a cooling flow? Di Mascolo EU 12-m 3
15:10:17 16:15:42 2021.1.00172.L Sgr_A_st_f_03_TP ACES: The ALMA CMZ Exploration Survey Longmore EU NA Total Power 3
14:41:09 15:45:13 2022.1.00333.S SPT-CL_J-a_03_TM1 Is the star formation in one of the most massive cluster at z=1 fuelled by a cooling flow? Di Mascolo EU 12-m 3
14:07:52 15:25:49 2022.1.01204.S C15_a_03_7M Forming hub-filament systems: An unbiased study of the gas kinematics of increasingly complex filamentary structures Peretto EU 7-m 3
13:33:49 14:40:01 2022.1.01203.S H22.4178_a_03_TM1 The Initial Conditions for Massive Star Moncada Cuadri CL 12-m 3
12:49:40 14:07:21 2022.1.01204.S C15_a_03_7M Forming hub-filament systems: An unbiased study of the gas kinematics of increasingly complex filamentary structures Peretto EU 7-m 3
11:19:44 12:14:32 2022.1.01356.S A1835_a_04_TM1 A Quest toward the Faint End of the Infrared Luminosity Function at z>4 Egami NA 12-m 4
10:49:25 12:08:56 2022.1.00052.S HerBS-13_b_03_7M The Home Straight - CO Redshifts of Herschel's Brightest SMGs Bakx EA 7-m 3
10:01:53 11:10:20 2022.1.01626.S A1367_OC-a_03_TM1 Non-star-forming molecular gas in intra-cluster multiphase orphan cloud Jachym EU 12-m 3
2023-01-20

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>23:45:09</td>
<td>00:58:20</td>
<td>IRAS0430_a_03_TM1</td>
<td></td>
<td>Outflows in Class 0/I Protostars with ALMA: A multi-scale approach</td>
<td>Plunkett</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>23:29:14</td>
<td>00:51:07</td>
<td>HerBS-98_c_04_7M</td>
<td></td>
<td>The Home Straight - CO Redshifts of Bax Herschel's Brightest SMGs</td>
<td>EA</td>
<td>7-m</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>23:26:50</td>
<td>00:40:51</td>
<td>NGC1097_a_03_TP</td>
<td></td>
<td>ALMA-FACTS: FundAmental CO 1-0 Koda Transition Survey of Nearby Galaxies</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>22:40:22</td>
<td>23:44:26</td>
<td>SPT0303-_b_03_TM1</td>
<td></td>
<td>SPT0303-59: The most extreme proto Herschel's Brightest SMGs</td>
<td>Plunkett</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>22:26:16</td>
<td>23:26:05</td>
<td>NGC0628_a_03_TP</td>
<td></td>
<td>ALMA-FACTS: FundAmental CO 1-0 Koda Transition Survey of Nearby Galaxies</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>21:35:17</td>
<td>22:39:27</td>
<td>SPT0303-_b_03_TM1</td>
<td></td>
<td>SPT0303-59: The most extreme proto Herschel's Brightest SMGs</td>
<td>Aravena</td>
<td>CL</td>
<td>12-m</td>
<td>3</td>
</tr>
</tbody>
</table>
21:20:20 22:37:32 2021.2.00052.S HerBS-98_c_04_7M The Home Straight - CO Redshifts of Herschel's Brightest SMGs Bakx EA 7-m 4
21:00:59 21:35:13 2021.2.01503.S G326b_a_03_TM1 The first redshift survey of star-forming protocluster candidates identified by Planck Hill NA 12-m 3
20:36:02 21:00:55 2022.1.01503.S G288b_a_03_TM1 The first redshift survey of star-forming protocluster candidates identified by Planck Hill NA 12-m 3
19:58:47 21:20:17 2021.2.00052.S HerBS-98_b_04_7M The Home Straight - CO Redshifts of Herschel's Brightest SMGs Bakx EA 7-m 4
19:56:23 20:26:14 2022.1.01503.S G088c_a_03_TM1 The first redshift survey of star-forming protocluster candidates identified by Planck Hill NA 12-m 3
18:37:46 19:45:53 2022.1.01515.S RGALX338_a_03_7M An unbiased census of the molecular gas content in the most massive galaxies in the nearby Universe Janssen NA 7-m 3
18:22:15 19:43:50 2022.1.00992.S B335_a_03_TP Fully characterization of streamers in the embedded phases of star formation Pineda EU Total Power 3
11:05:02 11:42:30 2022.1.00474.S E2_a_03_TM1 A Systematic Search For Extragalactic AME in the Disk of NGC4631 Murphy NA 12-m 3
10:41:50 11:04:03 2022.1.00474.S Nuc-B3_a_03_TM1 A Systematic Search For Extragalactic AME in the Disk of NGC4631 Murphy NA 12-m 3
10:40:19 11:41:23 2022.1.00290.S RCW103_S_b_03_TP Is atomic carbon a good tracer of H2 gas?: Impacts of cosmic-ray and/or shock induced destructions of CO Sano EA Total Power 3
09:59:10 11:22:20 2021.2.00052.S HerBS-13_b_03_7M The Home Straight - CO Redshifts of Herschel's Brightest SMGs Bakx EA 7-m 3
09:33:37 10:27:12 2022.1.00840.S TW_Hya_a_03_TM2 The Most Sensitive Search for Magnetic Fields in a Solar Nebula Analogue Teague NA 12-m 3
08:54:38 09:32:27 2022.1.00474.S E1_a_03_TM1 A Systematic Search For Extragalactic AME in the Disk of NGC4631 Murphy NA 12-m 3
08:34:50 09:59:05 2022.1.00716.S LEDA_745_a_03_7M Galaxy evolution in the Hydra Cluster through a molecular lens Hess EU 7-m 3
07:46:08 08:54:35 2022.1.01626.S A1367_OC_a_03_TM1 Non-star-forming molecular gas in intra-cluster multiphase orphan cloud Jachym EU 12-m 3
07:07:47 08:34:46 2022.1.00716.S LEDA_745_a_03_7M Galaxy evolution in the Hydra Cluster through a molecular lens Hess EU 7-m 3
06:47:46 07:46:04 2022.1.01657.S GLEAM_J1_e_03_TM1 Building the first statistical sample of powerful radio galaxies within the Epoch of Reionisation Stern NA 12-m 3
06:35:53 07:47:19 2022.1.01479.S ngs2566_a_03_TP CO Excitation Across the Local Galaxy Population den Brok EU Total Power 3
05:52:28 06:47:42 2022.1.01657.S GLEAM_J1_b_03_TM1 Building the first statistical sample of powerful radio galaxies within the Epoch of Reionisation Stern NA 12-m 3
05:46:32 07:07:42 2022.1.00716.S LEDA_751_a_03_7M Galaxy evolution in the Hydra Cluster through a molecular lens Hess EU 7-m 3
05:24:15 06:35:49 2022.1.01479.S ngs2566_a_03_TP CO Excitation Across the Local Galaxy Population den Brok EU Total Power 3
05:22:25 05:46:28 2022.1.01778.S J090217...a_03_7M Constraining the Accretion Properties of Nearby High-mass AGNs Ramakrishnan EU 7-m 3
2023-01-19

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:43:11</td>
<td>05:52:24</td>
<td>2022.1.00482.S</td>
<td>26668_a_03_TM1</td>
<td>ALMA CO-CAVITY: Molecular Gas in Espada Void Galaxies</td>
<td>EU</td>
<td>Total Power</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>00:43:30</td>
<td>05:24:10</td>
<td>2022.1.01570.S</td>
<td>WB89_101_a_03_TP</td>
<td>An ACA census of molecular clouds across the Galactic disk</td>
<td>Jian</td>
<td>Total Power</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>00:41:16</td>
<td>05:22:21</td>
<td>2022.1.01314.S</td>
<td>ESO_362-a_03_7M</td>
<td>ACA CO 1-0 Maps to Match MeerKAT Leroy 21-cm Maps</td>
<td>NA</td>
<td>Total Power</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>00:41:15</td>
<td>04:40:26</td>
<td>2022.1.00513.S</td>
<td>OMC2_a_03_TP</td>
<td>Are fibers confined by gas accretion?</td>
<td>Hacar</td>
<td>Total Power</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>00:33:43</td>
<td>04:43:07</td>
<td>2022.1.00482.S</td>
<td>26668_a_03_TM1</td>
<td>ALMA CO-CAVITY: Molecular Gas in Espada Void Galaxies</td>
<td>EU</td>
<td>Total Power</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>00:05:42</td>
<td>03:33:39</td>
<td>2022.1.01216.S</td>
<td>LkCa15_a_03_TM2</td>
<td>Dust traps in LkCa 15?</td>
<td>Sierra Morales</td>
<td>Total Power</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>00:48:40</td>
<td>04:01:11</td>
<td>2022.1.00016.S</td>
<td>Orion_KL_a_04_7M</td>
<td>High-Resolution Imaging of Deuterated Methanol (CH2DOH) in Orion KL: Toward Resolving a 30-Year Mystery</td>
<td>Wilkins</td>
<td>Total Power</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>00:40:55</td>
<td>03:41:11</td>
<td>2022.1.00513.S</td>
<td>OMC2_a_03_TP</td>
<td>Are fibers confined by gas accretion?</td>
<td>Hacar</td>
<td>Total Power</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>00:08:09</td>
<td>03:05:38</td>
<td>2022.1.00126.S</td>
<td>M512_a_03_TM1</td>
<td>Studying the Origin and Composition of Large-Scale Arc-like Structures Around Young Stars</td>
<td>Wendeborn</td>
<td>Total Power</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>01:35:59</td>
<td>02:48:36</td>
<td>2022.1.00016.S</td>
<td>Orion_KL_a_04_7M</td>
<td>High-Resolution Imaging of Deuterated Methanol (CH2DOH) in Orion KL: Toward Resolving a 30-Year Mystery</td>
<td>Wilkins</td>
<td>Total Power</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>01:04:23</td>
<td>02:28:03</td>
<td>2022.1.00131.S</td>
<td>IRAS_043_a_03_TP</td>
<td>Outflows in Class 0/I Protostars with ALMA: A multi-scale approach</td>
<td>Plunkett</td>
<td>Total Power</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>00:48:02</td>
<td>01:53:28</td>
<td>2022.1.01300.S</td>
<td>SPT0303-a_03_TM1</td>
<td>SPT0303-59: The most extreme proto Aravena cluster candidate from the SPT sample</td>
<td>CL</td>
<td>Total Power</td>
<td>12-m</td>
<td>3</td>
</tr>
</tbody>
</table>
12:32:47 12:58:20 2022.1.01657.S GLEAM_J1_l_03_TM1 Building the first statistical sample of powerful radio galaxies within the Epoch of Reionisation Stern NA 12-m 3
12:05:11 13:01:54 2021.2.00052.S HerBS-13_c_03_7M The Home Straight - CO Redshifts of Herschel's Brightest SMGs Bakx EA 7-m 3
11:42:36 12:25:29 2021.2.00542.S NGP-2843_a_03_TM1 Direct Measurements of the CMB Temperature across Cosmic History Riechers NA 12-m 3
11:16:39 11:42:07 2022.1.01657.S GLEAM_J1_m_03_TM1 Building the first statistical sample of powerful radio galaxies within the Epoch of Reionisation Stern NA 12-m 3
11:00:12 11:56:56 2021.2.00052.S HerBS-13_c_03_7M The Home Straight - CO Redshifts of Herschel's Brightest SMGs Bakx EA 7-m 3
10:19:06 10:58:05 2021.2.00052.S HerBS-16_b_03_7M The Home Straight - CO Redshifts of Herschel's Brightest SMGs Bakx EA 7-m 3
09:51:55 10:58:30 2022.1.00604.S J1240-00_a_04_TM1 Timing the Disappearance of Molecular Gas in Post-Starburst Galaxies Setton NA 12-m 4
09:38:10 10:17:41 2012.2.00052.S HerBS-16_a_03_7M The Home Straight - CO Redshifts of Herschel's Brightest SMGs Bakx EA 7-m 3
08:43:00 09:51:47 2021.2.00604.S J1114+01_a_04_TM1 Timing the Disappearance of Molecular Gas in Post-Starburst Galaxies Setton NA 12-m 4
08:34:22 09:38:07 2012.2.00052.S HerBS-11_c_03_7M The Home Straight - CO Redshifts of Herschel's Brightest SMGs Bakx EA 7-m 3
07:36:22 08:42:57 2022.1.00604.S J1046+01_a_04_TM1 Timing the Disappearance of Molecular Gas in Post-Starburst Galaxies Setton NA 12-m 4
07:29:36 08:34:18 2012.2.00052.S HerBS-11_b_03_7M The Home Straight - CO Redshifts of Herschel's Brightest SMGs Bakx EA 7-m 3
06:22:09 07:27:53 2021.1.00602.S RFGC1640_a_03_TM1 Probing the star formation process and dark matter halos of superthin galaxies Davis EU 12-m 3
06:07:56 07:29:30 2022.1.00716.S LEDA_751_a_03_7M Galaxy evolution in the Hydra Cluster through a molecular lens Hess EU 7-m 3
02:47:45 04:00:07 2022.1.00016.S Orion_KL_a_04_7M High-Resolution Imaging of Deuterated Methanol (CH2DOH) in Orion KL: Toward Resolving a 30-Year Mystery Wilkins NA 7-m 4
01:02:58 02:25:19 2022.1.01314.S NGC_1744_a_03_7M ACA CO 1-0 Maps to Match MeerKAT Leroy 21-cm Maps NA 7-m 3
00:56:10 02:08:54 2022.1.00360.S NGC1097_a_03_TP ALMA-FACTS: FundAmental CO 1-0 Koda Transition Survey of Nearby Galaxies NA Total Power 3

2023-01-18

Start (UT) End (UT) Project Code SchedBlock Project Title PI Executive Array Band

23:41:52 01:02:54 2022.1.00427.S J0459-AC_a_03_7M The Sunyaev-Zel'dovich effect toward Kitayama a distant galaxy cluster at z=1.7 EA 7-m 3
14:41:40 15:59:04 2022.1.01204.S C15_a_03_7M Forming hub-filament systems: An unbiased study of the gas kinematics of increasingly complex filamentary structures Peretto EU 7-m 3
12:29:27 13:30:31 2022.1.01660.S Tadpole_a_03_TM1 High-resolution Observations of the Tadpole near the Center of Our Galaxy Kaneko EA 12-m 3
12:02:18 12:28:50 2022.1.01657.S GLEAM_J1_o_03_TM1 Building the first statistical sample of powerful radio galaxies within the Epoch of Reionisation Stern NA 12-m 3
<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:52:34</td>
<td>13:19:44</td>
<td>2022.1.00500.S</td>
<td>FeSt-1_4-a_04_TP</td>
<td>The onset of contraction in a magnetized prestellar core</td>
<td>Alves</td>
<td>EU</td>
<td>Total Power</td>
<td>4</td>
</tr>
<tr>
<td>11:17:15</td>
<td>12:33:24</td>
<td>2022.1.01314.S</td>
<td>UGCA320_a_03_7M</td>
<td>ACA CO 1-0 Maps to Match MeerKAT</td>
<td>Leroy</td>
<td>NA</td>
<td>21-cm Maps</td>
<td>3</td>
</tr>
<tr>
<td>10:15:03</td>
<td>11:08:42</td>
<td>2022.1.00840.S</td>
<td>TW_Hya_a_03_TM2</td>
<td>The Most Sensitive Search for Magnetic Fields in a Solar Nebula Analogue</td>
<td>Teague</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>10:13:04</td>
<td>11:29:14</td>
<td>2022.1.00067.S</td>
<td>Spiderweb_a_04_TP</td>
<td>Cold halo around the massive Spiderweb Galaxy</td>
<td>Andreani</td>
<td>EU</td>
<td>Total Power</td>
<td>4</td>
</tr>
<tr>
<td>09:44:53</td>
<td>11:09:19</td>
<td>2022.1.00716.S</td>
<td>LEDA_745_a_03_7M</td>
<td>Galaxy evolution in the Hydra Cluster through a molecular lens</td>
<td>Hess</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>09:29:18</td>
<td>10:14:55</td>
<td>2022.1.00445.S</td>
<td>NGP-9484_a_03_TM1</td>
<td>Revealing overdensities and early-stage mergers in the Submillimeter Galaxy population</td>
<td>Zavala</td>
<td>EA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>09:15:56</td>
<td>10:13:00</td>
<td>2022.1.00360.S</td>
<td>NGC4321_a_03_TP</td>
<td>ALMA-FACTS: FundAmental CO 1-0 Transition Survey of Nearby Galaxies</td>
<td>Koda</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>08:32:05</td>
<td>09:29:14</td>
<td>2022.1.00884.S</td>
<td>VLA9334_a_03_TM1</td>
<td>Redshift scans for dusty star-forming galaxies at cosmic dawn</td>
<td>Gobat</td>
<td>CL</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>08:23:51</td>
<td>09:44:48</td>
<td>2022.1.00716.S</td>
<td>LEDA_751_a_03_7M</td>
<td>Galaxy evolution in the Hydra Cluster through a molecular lens</td>
<td>Hess</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>07:57:54</td>
<td>09:15:52</td>
<td>2022.1.00067.S</td>
<td>Spiderweb_a_04_TP</td>
<td>Cold halo around the massive Spiderweb Galaxy</td>
<td>Andreani</td>
<td>EU</td>
<td>Total Power</td>
<td>4</td>
</tr>
<tr>
<td>06:28:44</td>
<td>07:45:00</td>
<td>2022.1.00067.S</td>
<td>Spiderweb_a_04_TP</td>
<td>Cold halo around the massive Spiderweb Galaxy</td>
<td>Andreani</td>
<td>EU</td>
<td>Total Power</td>
<td>4</td>
</tr>
<tr>
<td>06:11:31</td>
<td>07:38:21</td>
<td>2022.1.00716.S</td>
<td>LEDA_745_a_03_7M</td>
<td>Galaxy evolution in the Hydra Cluster through a molecular lens</td>
<td>Hess</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>05:39:47</td>
<td>06:31:45</td>
<td>2022.1.00884.S</td>
<td>VLA9334_b_03_TM1</td>
<td>Redshift scans for dusty star-forming galaxies at cosmic dawn</td>
<td>Gobat</td>
<td>CL</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>05:16:58</td>
<td>06:27:35</td>
<td>2022.1.01479.S</td>
<td>ngs2566_a_03_TP</td>
<td>CO Excitation Across the Local Galaxy Population</td>
<td>den Brok</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>04:50:23</td>
<td>06:11:26</td>
<td>2022.1.00716.S</td>
<td>LEDA_751_a_03_7M</td>
<td>Galaxy evolution in the Hydra Cluster through a molecular lens</td>
<td>Hess</td>
<td>EU</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>04:38:58</td>
<td>05:36:13</td>
<td>2022.1.00884.S</td>
<td>VLA9334_a_03_TM1</td>
<td>Redshift scans for dusty star-forming galaxies at cosmic dawn</td>
<td>Gobat</td>
<td>CL</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>03:42:58</td>
<td>04:34:45</td>
<td>2022.1.00401.S</td>
<td>NGC_2440_c_06_TM1</td>
<td>Mapping Molecular Irradiation Tracers Kastner in Extreme Bipolar Planetary Nebulae</td>
<td>Hess</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:54:19</td>
<td>03:38:34</td>
<td>2022.1.01686.S</td>
<td>HD_32509_a_06_TM1</td>
<td>Testing the primordial origin of CO in debris discs</td>
<td>Panic</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:41:17</td>
<td>02:40:04</td>
<td>2022.1.00479.S</td>
<td>SVS13A_a_06_TM2</td>
<td>Material flow from envelope to disk in the protobinary system SVS13A</td>
<td>Hsieh</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>00:43:27</td>
<td>01:41:10</td>
<td>2022.1.01003.S</td>
<td>SPT0425-_a_04_TM1</td>
<td>Following the energy trail with CH+ in Vidal-Garcia strongly lensed starburst galaxies before cosmic noon</td>
<td>Hess</td>
<td>EU</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>00:37:14</td>
<td>01:50:13</td>
<td>2022.1.00360.S</td>
<td>NGC1097_a_03_TP</td>
<td>ALMA-FACTS: FundAmental CO 1-0 Transition Survey of Nearby Galaxies</td>
<td>Koda</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>00:13:59</td>
<td>01:35:49</td>
<td>2022.1.01314.S</td>
<td>NGC_1744_a_03_7M</td>
<td>ACA CO 1-0 Maps to Match MeerKAT</td>
<td>Leroy</td>
<td>NA</td>
<td>21-cm Maps</td>
<td>3</td>
</tr>
</tbody>
</table>

2023-01-17

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>22:09:57</td>
<td>00:06:29</td>
<td>2022.1.01515.S</td>
<td>RLERG015_a_03_7M</td>
<td>An unbiased census of the molecular gas content in the most massive galaxies in the nearby Universe</td>
<td>Janssen</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>20:47:58</td>
<td>22:00:42</td>
<td>2022.1.00360.S</td>
<td>NGC1097_a_03_TP</td>
<td>ALMA-FACTS: FundAmental CO 1-0 Transition Survey of Nearby Galaxies</td>
<td>Koda</td>
<td>NA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>20:37:44</td>
<td>22:09:53</td>
<td>2022.1.01515.S</td>
<td>RGALX006_a_03_7M</td>
<td>An unbiased census of the molecular gas content in the</td>
<td>Janssen</td>
<td>NA</td>
<td>7-m</td>
<td>3</td>
</tr>
<tr>
<td>Time</td>
<td>Duration</td>
<td>Telescope</td>
<td>Proposal ID</td>
<td>Title</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:55:35</td>
<td></td>
<td>GGALX354_a_03_7M</td>
<td>2022.1.01515.S</td>
<td>An unbiased census of the molecular gas content in the most massive galaxies in the nearby Universe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:47:06</td>
<td></td>
<td>B335_a_03_TP</td>
<td>2022.1.00992.S</td>
<td>Fully characterization of streamers in the embedded phases of star formation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:30:16</td>
<td></td>
<td>RGALX335_a_03_7M</td>
<td>2022.1.01515.S</td>
<td>An unbiased census of the molecular gas content in the most massive galaxies in the nearby Universe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:10:52</td>
<td></td>
<td>Tadpole_a_03_TM1</td>
<td>2022.1.01660.S</td>
<td>High-resolution Observations of the Tadpole near the Center of Our Galaxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:49:09</td>
<td></td>
<td>w49b_eas_a_03_7M</td>
<td>2022.1.01608.S</td>
<td>Mapping molecular gas exposed to strong X-rays, cosmic-rays and shocks of the supernova remnant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:34:58</td>
<td></td>
<td>NGC6334_b_03_7M</td>
<td>2022.1.01334.S</td>
<td>Unveiling the role of filamentary structures in star formation toward the mini-starburst region NGC6334</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:10:02</td>
<td></td>
<td>FeSt_1-4_a_04_TP</td>
<td>2022.1.00500.S</td>
<td>The onset of contraction in a magnetized prestellar core</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:57:28</td>
<td></td>
<td>Tadpole_a_03_TM1</td>
<td>2022.1.01660.S</td>
<td>High-resolution Observations of the Tadpole near the Center of Our Galaxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:29:04</td>
<td></td>
<td>NGC6334_b_03_7M</td>
<td>2022.1.01334.S</td>
<td>Unveiling the role of filamentary structures in star formation toward the mini-starburst region NGC6334</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:16:41</td>
<td></td>
<td>Tadpole_a_03_TM1</td>
<td>2022.1.01660.S</td>
<td>High-resolution Observations of the Tadpole near the Center of Our Galaxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:43:05</td>
<td></td>
<td>HIP81266_a_07_7M</td>
<td>2022.1.00931.S</td>
<td>Searching for a hidden population of debris disks around massive stars</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:23:53</td>
<td></td>
<td>flow09_a_06_TP</td>
<td>2022.1.00591.S</td>
<td>The 'Missing Link': Gas Accretion Flows in the Galactic Bar toward the Central Molecular Zone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:20:41</td>
<td></td>
<td>YC351.50_a_03_TM1</td>
<td>2022.1.01203.S</td>
<td>The Initial Conditions for Massive Star Mardones Formation in inner and outer Galaxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:13:25</td>
<td></td>
<td>TYC9005-_a_06_TM1</td>
<td>2022.1.01686.S</td>
<td>Testing the primordial origin of CO in debris discs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:51:08</td>
<td></td>
<td>Spiderwe_a_06_TP</td>
<td>2022.1.00067.S</td>
<td>Cold halo around the massive Spiderweb Galaxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:48:50</td>
<td></td>
<td>HIP67669_a_07_7M</td>
<td>2022.1.00931.S</td>
<td>Searching for a hidden population of debris disks around massive stars</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:47:00</td>
<td></td>
<td>BHR71-IR_o_07_TM1</td>
<td>2022.1.00316.L</td>
<td>COMPASS: Complex Organic Molecules in Protostars with ALMA Spectral Surveys</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:24:53</td>
<td></td>
<td>Spiderwe_a_06_TP</td>
<td>2022.1.00067.S</td>
<td>Cold halo around the massive Spiderweb Galaxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:38:54</td>
<td></td>
<td>SGASS_J1_a_05_TM1</td>
<td>2022.1.01220.S</td>
<td>Star Formation Under the Cosmic Microscope with JWST + ALMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:00:00</td>
<td></td>
<td>HIP67669_a_07_7M</td>
<td>2022.1.00931.S</td>
<td>Searching for a hidden population of debris disks around massive stars</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:57:18</td>
<td></td>
<td>Spiderwe_a_06_TP</td>
<td>2022.1.00067.S</td>
<td>Cold halo around the massive Spiderweb Galaxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:32:57</td>
<td></td>
<td>SGASS_J1_a_05_TM1</td>
<td>2022.1.01220.S</td>
<td>Star Formation Under the Cosmic Microscope with JWST + ALMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:40:55</td>
<td></td>
<td>ESO_437-_c_03_7M</td>
<td>2022.1.00716.S</td>
<td>Galaxy evolution in the Hydra Cluster through a molecular lens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:32:08</td>
<td></td>
<td>Spiderwe_a_06_TP</td>
<td>2022.1.00067.S</td>
<td>Cold halo around the massive Spiderweb Galaxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05:36:02</td>
<td></td>
<td>J1107579_a_07_TM1</td>
<td>2022.1.00875.L</td>
<td>The ALMA Disk-Exoplanet C/Ontception</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05:22:20</td>
<td></td>
<td>ESO_437-_c_03_7M</td>
<td>2022.1.00716.S</td>
<td>Galaxy evolution in the Hydra Cluster through a molecular lens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:34:42</td>
<td></td>
<td>HOPS-108-c_07_TM1</td>
<td>2022.1.00316.L</td>
<td>COMPASS: Complex Organic Molecules in Protostars with ALMA Spectral Surveys</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **Telescope:** 12-m, 7-m, Total Power

Authors:
- Janssen, NA, 7-m, 3
- Pineda, EU, Total Power, 3
- Janssen, NA, 7-m, 3
- Kaneko, EA, 12-m, 3
- Zhang, CL, 7-m, 3
- Li, EA, 7-m, 3
- Alves, EU, Total Power, 4
- Kaneko, EA, 12-m, 3
- Janson, EU, 7-m, 7
- Ott, NA, Total Power, 6
- Kaneko, EA, 12-m, 3
- Panic, EU, 12-m, 6
- Andreani, EU, Total Power, 6
- Janson, EU, 7-m, 7
- Janssen, EU, 7-m, 7
- Andreani, EU, Total Power, 6
- Vieira, NA, 12-m, 5
- Jorgensen, EA EU NA, 12-m, 7
- Andreani, EU, Total Power, 6
- Vieira, NA, 12-m, 5
- Hess, EU, 7-m, 3
- Hess, EU, Total Power, 6
- Andreani, EU, Total Power, 6
- Cleeves, CL EA EU NA, 12-m, 7
- Arce, EU, Total Power, 6
- Andreani, EU, Total Power, 6
- Vieira, NA, 12-m, 7

Spectral Surveys:
- Molecules in Protostars with ALMA
- COMPASS: Complex Organic Envelope Interactions and Evolution
- Survey of Orion Protostellar Outflow-through a molecular lens
- Galaxy evolution in the Hydra Cluster
- Microscope with JWST + ALMA
- Star Formation Under the Cosmic
- Spiderweb Galaxy
- Cold halo around the massive
- Molecules in Protostars with ALMA
- COMPASS: Complex Organic Envelope Interactions and Evolution