2023-12-25

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>04:42:17</td>
<td>05:53:02</td>
<td>2023.1.01471.S</td>
<td>2MASXJ05_a_06_7M</td>
<td>An ACA Survey of Molecular Gas in Mergers and Dual AGN</td>
<td>Treister</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>04:30:42</td>
<td>05:26:06</td>
<td>2023.1.00536.S</td>
<td>LMCGM_0_g_06_TP</td>
<td>The ACA Ordinary Cloud Study of the Large Magellanic Cloud</td>
<td>Rosolowsky</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>03:34:52</td>
<td>04:30:22</td>
<td>2023.1.00536.S</td>
<td>LMCGM_0_g_06_TP</td>
<td>The ACA Ordinary Cloud Study of the Large Magellanic Cloud</td>
<td>Rosolowsky</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>03:29:57</td>
<td>04:42:07</td>
<td>2023.1.01471.S</td>
<td>HE0351+0_a_06_7M</td>
<td>An ACA Survey of Molecular Gas in Mergers and Dual AGN</td>
<td>Treister</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>03:22:01</td>
<td>04:48:48</td>
<td>2023.1.00958.T</td>
<td>source_1_c_06_TM1</td>
<td>Monitoring Post-Flare Protoplanetary Chemistry with ALMA</td>
<td>Waggoner</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>02:36:48</td>
<td>03:33:52</td>
<td>2023.1.00536.S</td>
<td>LMCGM_5_c_06_TP</td>
<td>The ACA Ordinary Cloud Study of the Large Magellanic Cloud</td>
<td>Rosolowsky</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>01:54:00</td>
<td>03:09:02</td>
<td>2023.1.01471.S</td>
<td>HE0351+0_a_06_7M</td>
<td>An ACA Survey of Molecular Gas in Mergers and Dual AGN</td>
<td>Treister</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>01:41:29</td>
<td>03:07:54</td>
<td>2023.1.00958.T</td>
<td>source_1_c_06_TM1</td>
<td>Monitoring Post-Flare Protoplanetary Chemistry with ALMA</td>
<td>Waggoner</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>00:39:34</td>
<td>01:41:18</td>
<td>2023.1.00127.L</td>
<td>Q0152+00_a_04_TM1</td>
<td>Probing the molecular gas -- the missing puzzle piece to the baryon cycle</td>
<td>Peroux</td>
<td>CL EU NA</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>00:17:54</td>
<td>00:58:57</td>
<td>2023.1.01099.S</td>
<td>012845.1_a_06_7M</td>
<td>Towards resolving orbiting binary SMBH, plus shadows, jets, and accretion flows of single SMBH: ACA fluxes</td>
<td>Hernandez-Yevenes</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>00:08:06</td>
<td>01:26:11</td>
<td>2023.1.01370.S</td>
<td>NGC1333_b_06_TP</td>
<td>Filament formation and triggered star formation by cloud collision in NGC 1333</td>
<td>Tachihara</td>
<td>EA</td>
<td>Total Power</td>
<td>6</td>
</tr>
</tbody>
</table>

2023-12-24

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>23:33:08</td>
<td>00:34:46</td>
<td>2023.1.00127.L</td>
<td>Q0152+00_a_04_TM1</td>
<td>Probing the molecular gas -- the missing puzzle piece to the baryon cycle</td>
<td>Peroux</td>
<td>CL EU NA</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>22:10:13</td>
<td>23:11:50</td>
<td>2023.1.00127.L</td>
<td>Q0152+00_a_04_TM1</td>
<td>Probing the molecular gas -- the missing puzzle piece to the baryon cycle</td>
<td>Peroux</td>
<td>CL EU NA</td>
<td>12-m</td>
<td>4</td>
</tr>
<tr>
<td>22:05:54</td>
<td>23:11:17</td>
<td>2023.1.01101.S</td>
<td>NGC7319_a_03_TP</td>
<td>ACA CO(1-0) mapping of Stephan's Quintet</td>
<td>Maeda</td>
<td>EA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>20:00:21</td>
<td>20:50:55</td>
<td>2023.1.00963.S</td>
<td>ID21_a_03_TM1</td>
<td>An ALMA-MUSE survey of z=3 quasars: deciphering their multiphase gas reservoirs and small-scale environment</td>
<td>Arrigoni Battaia</td>
<td>EU</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>19:40:21</td>
<td>20:00:09</td>
<td>2023.1.01381.S</td>
<td>G007I_a_03_TM1</td>
<td>Probing early structure formation with Planck-selected protoclusters</td>
<td>Hill</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>17:34:56</td>
<td>18:08:38</td>
<td>2023.1.01099.S</td>
<td>J1107888_a_06_7M</td>
<td>Towards resolving orbiting binary SMBH, plus shadows, jets, and accretion flows of single SMBH: ACA fluxes</td>
<td>Hernandez-Yevenes</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>00:09:51</td>
<td>00:49:36</td>
<td>2023.1.01099.S</td>
<td>6dFJ2321_a_06_7M</td>
<td>Towards resolving orbiting binary SMBH, plus shadows, jets, and accretion flows of single SMBH: ACA fluxes</td>
<td>Hernandez-Yevenes</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
</tbody>
</table>

2023-12-23

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
</table>

ALMA Observing Activity from 2023-12-18T17:59:00 to 2023-12-25T18:00:00
<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:25:49</td>
<td>00:54:48</td>
<td>2023.1.01099.S</td>
<td>J2217-02_a_06_TM1</td>
<td>Spatially resolved deep submm follow-up of z > 6 low-luminous quasars with approved JWST's stellar light observations</td>
<td>Izumi</td>
<td>EA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>00:58:43</td>
<td>01:28:03</td>
<td>2023.1.01099.S</td>
<td>NGC1333_a_06_TP</td>
<td>Filament formation and triggered star formation by cloud collision in NGC 1333</td>
<td>Tachihara</td>
<td>NA</td>
<td>Total Power</td>
<td>6</td>
</tr>
<tr>
<td>01:28:03</td>
<td>01:28:43</td>
<td>2023.1.01099.S</td>
<td>Gaia2805_a_06_7M</td>
<td>Towards resolving orbiting binary SMBH, plus shadows, jets, and accretion flows of single SMBH: ACA fluxes</td>
<td>Hernandez-Yevenes</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>01:28:43</td>
<td>01:30:43</td>
<td>2023.1.01099.S</td>
<td>J2217-02_a_06_TM1</td>
<td>Spatially resolved deep submm follow-up of z > 6 low-luminous quasars with approved JWST's stellar light observations</td>
<td>Izumi</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:30:43</td>
<td>01:31:26</td>
<td>2023.1.01101.S</td>
<td>NGC7319_a_03_TP</td>
<td>ACA CO(1-0) mapping of Stephan's Quintet</td>
<td>Maeda</td>
<td>EA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>01:31:26</td>
<td>01:31:55</td>
<td>2023.1.01099.S</td>
<td>J220107+_a_07_TM1</td>
<td>Towards resolving orbiting binary SMBH, plus shadows, jets, and accretion flows of single SMBH: ACA fluxes</td>
<td>Hernandez-Yevenes</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>01:31:55</td>
<td>01:32:34</td>
<td>2023.1.00434.S</td>
<td>J002633+_a_07_TM1</td>
<td>A Survey of Radio-Loud Quasars Host Galaxies at Cosmic Dawn</td>
<td>Mazzucchelli</td>
<td>CL</td>
<td>12-m</td>
<td>7</td>
</tr>
<tr>
<td>01:32:34</td>
<td>01:38:31</td>
<td>2023.1.01099.S</td>
<td>233132.8_a_06_7M</td>
<td>Towards resolving orbiting binary SMBH, plus shadows, jets, and accretion flows of single SMBH: ACA fluxes</td>
<td>Hernandez-Yevenes</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>01:38:31</td>
<td>01:39:10</td>
<td>2023.1.01099.S</td>
<td>6QZJ2219_a_06_7M</td>
<td>Towards resolving orbiting binary SMBH, plus shadows, jets, and accretion flows of single SMBH: ACA fluxes</td>
<td>Hernandez-Yevenes</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>01:39:10</td>
<td>01:40:49</td>
<td>2023.1.01246.S</td>
<td>B335_b_03_TP</td>
<td>The cold chemistry of protostellar hot corinos</td>
<td>Jorgensen</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>01:40:49</td>
<td>01:43:58</td>
<td>2023.1.00698.S</td>
<td>ESO079-0_a_03_TP</td>
<td>ALMA-GECKOS: Completing the multiphase view of gas in edge-on galaxies for a MUSE large program</td>
<td>Bolatto</td>
<td>NA</td>
<td>12-m</td>
<td>3</td>
</tr>
<tr>
<td>01:43:58</td>
<td>01:47:30</td>
<td>2023.1.01099.S</td>
<td>2MASS_J1_a_06_TM1</td>
<td>Is Age Just A Number? Investigating the Evolution of Gas Mass and Composition in Late-stage Protoplanetary Disks</td>
<td>Anderson</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:47:30</td>
<td>01:50:00</td>
<td>2023.1.01099.S</td>
<td>G316.139_a_06_TM1</td>
<td>Magnetic Fields in Massive Collapsing Clumps</td>
<td>Wang</td>
<td>CL</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:50:00</td>
<td>01:52:30</td>
<td>2023.1.01099.S</td>
<td>G316.139_a_06_TM1</td>
<td>Magnetic Fields in Massive Collapsing Clumps</td>
<td>Zhu</td>
<td>CL</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>01:52:30</td>
<td>02:02:03</td>
<td>2022.1.01259.S</td>
<td>Per-emb- a_06_TM1</td>
<td>How common are streamers? An unbiased survey of all protostellar envelopes in a star-forming region</td>
<td>Segura-Cox</td>
<td>NA</td>
<td>12-m</td>
<td>6</td>
</tr>
</tbody>
</table>
2023-12-21

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>23:21:12</td>
<td>00:53:54</td>
<td>2023.1.00626.S</td>
<td>ID2_a_06_TM1</td>
<td>Spatially Resolving Dust Obscured Star Formation</td>
<td>Kokorev</td>
<td>EU</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>21:58:04</td>
<td>22:38:02</td>
<td>2023.1.01099.S</td>
<td>234856.4_a_06_7M</td>
<td>Towards resolving orbiting binary SMBH, plus shadows, jets, and accretion flows of single SMBH: ACA fluxes</td>
<td>Hernandez-Yevenes</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
</tbody>
</table>

Overview:

- **2023.1.00626.S**
 - SchedBlock: ID2_a_06_TM1
 - Project Title: Spatially Resolving Dust Obscured Star Formation
 - PI: Kokorev
 - Executive: EU
 - Array: 12-m
 - Band: 6

- **2023.1.01099.S**
 - SchedBlock: HAQ2358+_a_06_7M
 - Project Title: Towards resolving orbiting binary SMBH, plus shadows, jets, and accretion flows of single SMBH: ACA fluxes
 - PI: Hernandez-Yevenes
 - Executive: CL
 - Array: 7-m
 - Band: 6

- **2023.1.01099.S**
 - SchedBlock: 234856.4_a_06_7M
 - Project Title: Towards resolving orbiting binary SMBH, plus shadows, jets, and accretion flows of single SMBH: ACA fluxes
 - PI: Hernandez-Yevenes
 - Executive: CL
 - Array: 7-m
 - Band: 6
SMBH, plus shadows, jets, and accretion flows of single SMBH: ACA fluxes

Spatially Resolving Dust Obscured Star Formation
Kokorev EU 12-m 6

A complete ALMA study of AGN in Nearby Major Galaxy Mergers at <5kpc Nuclear Separations
Treister CL 12-m 6

Towards resolving orbiting binary SMBH, plus shadows, jets, and accretion flows of single SMBH: ACA fluxes
Hernandez-Yevenes CL 7-m 6

Spatially resolved deep submm follow-up of z > 6 low-luminosity quasars with approved JWST’s stellar light observations
Izumi EA 12-m 6

UNVeiling the Initial Conditions of high-mass star-formation (UNIC)
Redaelli CL EA EU NA 7-m 6

Measuring accurate gas masses for the exoALMA planet-forming disks
Trapani NA 12-m 6

Feedback Chemistry in Gas Infall and Riechers Outflows of the Most Active Starburst Galaxies at Redshifts 2-5
EU 7-m 7

High-mass Photoionising Protostellar Object (HIPPO) survey
Tanaka EA 12-m 6

The Nearby Evolved Stars Survey: quantifying the gas and dust return to the Galactic interstellar medium
Scicluna EA 7-m 6

A Survey of Infall in the Very Early Stages of High-Mass Star Formation
Mori EA Total Power 6

The Nearby Evolved Stars Survey: quantifying the gas and dust return to the Galactic interstellar medium
Scicluna EA 7-m 7

UNVeiling the Initial Conditions of high-mass star-formation (UNIC)
Redaelli CL EA EU NA Total Power 7

UNVeiling the Initial Conditions of high-mass star-formation (UNIC)
Redaelli CL EA EU NA 7-m 7

2023-12-20

<table>
<thead>
<tr>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Project Code</th>
<th>SchedBlock</th>
<th>Project Title</th>
<th>PI</th>
<th>Executive</th>
<th>Array</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>22:00:41</td>
<td>23:03:51</td>
<td>2023.1.01101.S</td>
<td>NGC7319_a_03_TP</td>
<td>ACA CO(1-0) mapping of Stephan's Quintet</td>
<td>Maeda</td>
<td>EA</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>21:10:18</td>
<td>22:30:16</td>
<td>2023.1.01706.S</td>
<td>J2255+02_a_06_TM1</td>
<td>Spatially resolved deep submm follow-up of z > 6 low-luminosity quasars with approved JWST’s stellar light observations</td>
<td>Izumi</td>
<td>EA</td>
<td>12-m</td>
<td>6</td>
</tr>
<tr>
<td>20:48:37</td>
<td>22:00:37</td>
<td>2023.1.01246.S</td>
<td>B335_b_03_TP</td>
<td>The cold chemistry of protostellar hot corinos</td>
<td>Jorgensen</td>
<td>EU</td>
<td>Total Power</td>
<td>3</td>
</tr>
<tr>
<td>20:33:50</td>
<td>21:48:47</td>
<td>2023.1.00804.S</td>
<td>J2029_a_07_7M</td>
<td>Feedback Chemistry in Gas Infall and Riechers Outflows of the Most Active Starburst Galaxies at Redshifts 2-5</td>
<td>EU</td>
<td>7-m</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>19:12:03</td>
<td>20:33:33</td>
<td>2023.1.00360.L</td>
<td>G18.61-0_b_06_7M</td>
<td>UNVeiling the Initial Conditions of high-mass star-formation (UNIC)</td>
<td>Redaelli</td>
<td>CL EA EU NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>17:25:53</td>
<td>18:47:51</td>
<td>2023.1.00360.L</td>
<td>G18.61-0_b_06_7M</td>
<td>UNVeiling the Initial Conditions of high-mass star-formation (UNIC)</td>
<td>Redaelli</td>
<td>CL EA EU NA</td>
<td>7-m</td>
<td>6</td>
</tr>
<tr>
<td>08:30:44</td>
<td>09:56:43</td>
<td>2023.1.01099.S</td>
<td>102255.2_a_06_7M</td>
<td>Towards resolving orbiting binary SMBH, plus shadows, jets, and accretion flows of single SMBH: ACA fluxes</td>
<td>Hernandez-Yevenes</td>
<td>CL</td>
<td>7-m</td>
<td>6</td>
</tr>
</tbody>
</table>
accretion flows of single SMBH: ACA fluxes
Monitoring Post-Flare Protoplanetary Chemistry with ALMA

Physics of low-metallicity molecular clouds with ALMA

Towards resolving orbiting binary SMBH, plus shadows, jets, and accretion flows of single SMBH: ACA fluxes

Towards resolving orbiting binary SMBH, plus shadows, jets, and accretion flows of single SMBH: ACA fluxes

Monitoring Post-Flare Protoplanetary Chemistry with ALMA

The ACA ORdinary Cloud Study of the Large Magellanic Cloud

Towards resolving orbiting binary SMBH, plus shadows, jets, and accretion flows of single SMBH: ACA fluxes

Unveiling the physics controlling cloud Schinnerer and star formation in extragalactic Central Molecular Zones (eCMZs)

Filament formation and triggered star formation by cloud collision in NGC 1333

Unveiling the physics controlling cloud Schinnerer and star formation in extragalactic Central Molecular Zones (eCMZs)

An ACA Survey of Molecular Gas in Mergers and Dual AGN

An ALMA-MUSE survey of z~3 quasars: deciphering their multiphase gas reservoirs and small-scale environment

Spatially resolved deep submm follow-up of z > 6 low-luminosity quasars with approved JWST’s stellar light observations

ACA CO(1-0) mapping of Stephan’s Quintet

Towards resolving orbiting binary SMBH, plus shadows, jets, and accretion flows of single SMBH: ACA fluxes

The cold chemistry of protostellar hot corinos

UNVeiling the Initial Conditions of high-mass star-formation (UNIC) UNVeiling the Initial Conditions of high-mass star-formation (UNIC) UNVeiling the Initial Conditions of high-mass star-formation (UNIC)

High-mass Photoionising Protostellar Object (HIPPO) survey

UNVeiling the Initial Conditions of high-mass star-formation (UNIC)

UNVeiling the Initial Conditions of high-mass star-formation (UNIC)

Towards a complete census of methanol budget in isolated protostars

Towards a complete census of methanol budget in isolated protostars

Clumps of Molecular Gas in the Turbulent, Gas-Rich DYNAMO Galaxies

Project Title

Project Code

SchedBlock

PI

Executive

Array

Band

An ALMA-MUSE survey of z~3 quasars: deciphering their multiphase gas reservoirs and small-scale environment

Arrigoni Battaia

EU

7-m

3

Spatially resolved deep submm follow-up of z > 6 low-luminosity quasars with approved JWST’s stellar light observations

Izumi

EA

12-m

6

ACA CO(1-0) mapping of Stephan’s Quintet

Maeda

EA

Total Power

3

Towards resolving orbiting binary SMBH, plus shadows, jets, and accretion flows of single SMBH: ACA fluxes

Hernandez-Yevenes

CL

7-m

6

The cold chemistry of protostellar hot corinos

Jorgensen

EU

Total Power

3

UNVeiling the Initial Conditions of high-mass star-formation (UNIC) UNVeiling the Initial Conditions of high-mass star-formation (UNIC) UNVeiling the Initial Conditions of high-mass star-formation (UNIC)

Tanaka

EA

12-m

6

Towards a complete census of methanol budget in isolated protostars

Yang

EA

Total Power

6

Towards a complete census of methanol budget in isolated protostars

Yang

EA

12-m

7

Clumps of Molecular Gas in the Turbulent, Gas-Rich DYNAMO Galaxies

Lenkic

NA

12-m

7
Unveiling the physics controlling cloud and star formation in extragalactic Central Molecular Zones (eCMZs)

Schinnerer

EU 12-m 6

Unveiling the physics controlling cloud and star formation in extragalactic Central Molecular Zones (eCMZs)

Schinnerer

EU 12-m 6

Unveiling the physics controlling cloud and star formation in extragalactic Central Molecular Zones (eCMZs)

Schinnerer

EU 12-m 6

Unveiling the physics controlling cloud and star formation in extragalactic Central Molecular Zones (eCMZs)

Schinnerer

EU 12-m 6

CLASSY&CO: revealing the molecular gas fueling metal-poor star-forming high-z analogs in the local universe

Mingozzi

NA 12-m 3

Probing early structure formation with Planck-selected protoclusters

Hill

NA 12-m 3

A Survey of Infall in the Very Early Stages of High-Mass Star Formation

Morii

EA Total Power 3